434 research outputs found
Semantic diversity:A measure of contextual variation in word meaning based on latent semantic analysis
Semantic ambiguity is typically measured by summing the number of senses or dictionary definitions that a word has. Such measures are somewhat subjective and may not adequately capture the full extent of variation in word meaning, particularly for polysemous words that can be used in many different ways, with subtle shifts in meaning. Here, we describe an alternative, computationally derived measure of ambiguity based on the proposal that the meanings of words vary continuously as a function of their contexts. On this view, words that appear in a wide range of contexts on diverse topics are more variable in meaning than those that appear in a restricted set of similar contexts. To quantify this variation, we performed latent semantic analysis on a large text corpus to estimate the semantic similarities of different linguistic contexts. From these estimates, we calculated the degree to which the different contexts associated with a given word vary in their meanings. We term this quantity a word's semantic diversity (SemD). We suggest that this approach provides an objective way of quantifying the subtle, context-dependent variations in word meaning that are often present in language. We demonstrate that SemD is correlated with other measures of ambiguity and contextual variability, as well as with frequency and imageability. We also show that SemD is a strong predictor of performance in semantic judgments in healthy individuals and in patients with semantic deficits, accounting for unique variance beyond that of other predictors. SemD values for over 30,000 English words are provided as supplementary materials. © 2012 Psychonomic Society, Inc
Controlling Cherenkov angles with resonance transition radiation
Cherenkov radiation provides a valuable way to identify high energy particles
in a wide momentum range, through the relation between the particle velocity
and the Cherenkov angle. However, since the Cherenkov angle depends only on
material's permittivity, the material unavoidably sets a fundamental limit to
the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring
Imaging Cherenkov detectors must employ materials transparent to the frequency
of interest as well as possessing permittivities close to unity to identify
particles in the multi GeV range, and thus are often limited to large gas
chambers. It would be extremely important albeit challenging to lift this
fundamental limit and control Cherenkov angles as preferred. Here we propose a
new mechanism that uses constructive interference of resonance transition
radiation from photonic crystals to generate both forward and backward
Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible
way with high sensitivity to any desired range of velocities. Photonic crystals
thus overcome the severe material limit for Cherenkov detectors, enabling the
use of transparent materials with arbitrary values of permittivity, and provide
a promising option suited for identification of particles at high energy with
enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary
information with 18 pages and 5 figures, appended at the end of the file with
the manuscript. Source files in Word format converted to PDF. Submitted to
Nature Physic
Human mass balance study of the novel anticancer agent ixabepilone using accelerator mass spectrometry
Ixabepilone (BMS-247550) is a semi-synthetic, microtubule stabilizing epothilone B analogue which is more potent than taxanes and has displayed activity in taxane-resistant patients. The human plasma pharmacokinetics of ixabepilone have been described. However, the excretory pathways and contribution of metabolism to ixabepilone elimination have not been determined. To investigate the elimination pathways of ixabepilone we initiated a mass balance study in cancer patients. Due to autoradiolysis, ixabepilone proved to be very unstable when labeled with conventional [14C]-levels (100 μCi in a typical human radio-tracer study). This necessitated the use of much lower levels of [14C]-labeling and an ultra-sensitive detection method, Accelerator Mass Spectrometry (AMS). Eight patients with advanced cancer (3 males, 5 females; median age 54.5 y; performance status 0–2) received an intravenous dose of 70 mg, 80 nCi of [14C]ixabepilone over 3 h. Plasma, urine and faeces were collected up to 7 days after administration and total radioactivity (TRA) was determined using AMS. Ixabepilone in plasma and urine was quantitated using a validated LC-MS/MS method. Mean recovery of ixabepilone-derived radioactivity was 77.3% of dose. Fecal excretion was 52.2% and urinary excretion was 25.1%. Only a minor part of TRA is accounted for by unchanged ixabepilone in both plasma and urine, which indicates that metabolism is a major elimination mechanism for this drug. Future studies should focus on structural elucidation of ixabepilone metabolites and characterization of their activities
Urban women's socioeconomic status, health service needs and utilization in the four weeks after postpartum hospital discharge: findings of a Canadian cross-sectional survey
<p>Abstract</p> <p>Background</p> <p>Postpartum women who experience socioeconomic disadvantage are at higher risk for poor health outcomes than more advantaged postpartum women, and may benefit from access to community based postpartum health services. This study examined socioeconomically disadvantaged (SED) postpartum women's health, and health service needs and utilization patterns in the first four weeks post hospital discharge, and compared them to more socioeconomically advantaged (SEA) postpartum women's health, health service needs and utilization patterns.</p> <p>Methods</p> <p>Data collected as part of a large Ontario cross-sectional mother-infant survey were analyzed. Women (N = 1000) who had uncomplicated vaginal births of single 'at-term' infants at four hospitals in two large southern Ontario, Canada cities were stratified into SED and SEA groups based on income, social support and a universally administered hospital postpartum risk screen. Participants completed a self-administered questionnaire before hospital discharge and a telephone interview four weeks after discharge. Main outcome measures were self-reported health status, symptoms of postpartum depression, postpartum service needs and health service use.</p> <p>Results</p> <p>When compared to the SEA women, the SED women were more likely to be discharged from hospital within the first 24 hours after giving birth [OR 1.49, 95% CI (1.01–2.18)], less likely to report very good or excellent health [OR 0.48, 95% CI (0.35–0.67)], and had higher rates of symptoms of postpartum depression [OR 2.7, 95% CI(1.64–4.4)]. No differences were found between groups in relation to self reported need for and ability to access services for physical and mental health needs, or in use of physicians, walk-in clinics and emergency departments. The SED group were more likely to accept public health nurse home visits [OR 2.24, 95% CI(1.47–3.40)].</p> <p>Conclusion</p> <p>Although SED women experienced poorer mental and overall health they reported similar health service needs and utilization patterns to more SEA women. The results can assist policy makers, health service planners and providers to develop and implement necessary and accessible services. Further research is needed to evaluate SED postpartum women's health service needs and barriers to service use.</p
High-throughput assay for determining enantiomeric excess of chiral diols, amino alcohols, and amines and for direct asymmetric reaction screening
Determining enantiomeric excess (e.e.) in chiral compounds is key to development of chiral catalyst auxiliaries and chiral drugs. Here we describe a sensitive and robust fluorescence-based assay for determining e.e. in mixtures of enantiomers of 1,2- and 1,3-diols, chiral amines, amino alcohols, and amino-acid esters. The method is based on dynamic self-assembly of commercially available chiral amines, 2-formylphenylboronic acid, and chiral diols in acetonitrile to form fluorescent diastereomeric complexes. Each analyte enantiomer engenders a diastereomer with distinct fluorescence wavelength/intensity originating from enantiopure fluorescent ligands. In this assay, enantiomers of amines and amine derivatives assemble with diol-type ligands containing a binaphthol moiety (BINOL and VANOL), whereas diol enantiomers form complexes with the enantiopure amine-type fluorescent ligand tryptophanol. The differential fluorescence is utilized to determine the amount of each enantiomer in the mixture with an error of <1% e.e. This method enables high-throughput real-time evaluation of enantiomeric/diastereomeric excess (e.e./d.e.) and product yield of crude asymmetric reaction products. The procedure comprises high-throughput liquid dispensing of three components into 384-well plates and recording of fluorescence using an automated plate reader. The approach enables scaling up the screening of combinatorial libraries and, together with parallel synthesis, creates a robust platform for discovering chiral catalysts or auxiliaries for asymmetric transformations and chiral drug development. The procedure takes ~4–6 h and requires 10–20 ng of substrate per well. Our fluorescence-based assay offers distinct advantages over existing methods because it is not sensitive to the presence of common additives/impurities or unreacted/incompletely utilized reagents or catalysts.</p
The 'PUCE CAFE' Project: the First 15K Coffee Microarray, a New Tool for Discovering Candidate Genes correlated to Agronomic and Quality Traits
Background: Understanding the genetic elements that contribute to key aspects of coffee biology will have an impact on future agronomical improvements for this economically important tree. During the past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. Results: The "PUCE CAFE" Project, organized by the scientific consortium NESTLE/IRD/CIRAD, has developed an oligo-based microarray using 15,721 unigenes derived from published coffee EST sequences mostly obtained from different stages of fruit development and leaves in Coffea Canephora (Robusta). Hybridizations for two independent experiments served to compare global gene expression profiles in three types of tissue matter (mature beans, leaves and flowers) in C. canephora as well as in the leaves of three different coffee species (C. canephora, C. eugenoides and C. arabica). Microarray construction, statistical analyses and validation by Q-PCR analysis are presented in this study. Conclusion: We have generated the first 15 K coffee array during this PUCE CAFE project, granted by Genoplante (the French consortium for plant genomics). This new tool will help study functional genomics in a wide range of experiments on various plant tissues, such as analyzing bean maturation or resistance to pathogens or drought. Furthermore, the use of this array has proven to be valid in different coffee species (diploid or tetraploid), drastically enlarging its impact for high-throughput gene expression in the community of coffee research
rDNA mapping, heterochromatin characterization and AT/GC content of Agapanthus africanus (L.) Hoffmanns (Agapanthaceae)
Wage Inequality
This chapter considers wage inequality in India at a point in time (2011–12) with particular reference to inequality in wages between male and female workers and between workers from different social groups — the Scheduled Tribes, the Scheduled Cates, the non-Muslim Other Backward Classes, Muslims, and the Forward Castes. The thrust of the analysis in this chapter is to decompose the difference in wages between men and women, and between the Forward Castes and the other social groups, into a part that can be “explained” by employer bias and that which is due to differences in employee attributes. The analysis of this chapter extends earlier analyses of wage inequality in India to include social groups; methodologically, it seeks an explanation for inter-group inequality in terms of employer bias and (differences in) employee attributes. The analysis in this chapter uses data from two independent sources to analyse the phenomenon of inter-group wage inequality: the 68th round of the National Sample Survey pertaining to the period July 2011–June 2012 and the Indian Human Development Survey pertaining to 2011
Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3–5, little is known about how these vary across Earth’s largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth–mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink
Paxillin Mediates Sensing of Physical Cues and Regulates Directional Cell Motility by Controlling Lamellipodia Positioning
Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5–10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax−/− and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax−/− cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax−/− and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices
- …
