865 research outputs found

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Nutrition Strategies for Triathlon

    Get PDF
    Contemporary sports nutrition guidelines recommend that each athlete develop a personalised, periodised and practical approach to eating that allows him or her to train hard, recover and adapt optimally, stay free of illness and injury and compete at their best at peak races. Competitive triathletes undertake a heavy training programme to prepare for three different sports while undertaking races varying in duration from 20 min to 10 h. The everyday diet should be adequate in energy availability, provide CHO in varying amounts and timing around workouts according to the benefits of training with low or high CHO availability and spread high-quality protein over the day to maximise the adaptive response to each session. Race nutrition requires a targeted and well-practised plan that maintains fuel and hydration goals over the duration of the specific event, according to the opportunities provided by the race and other challenges, such as a hot environment. Supplements and sports foods can make a small contribution to a sports nutrition plan, when medical supplements are used under supervision to prevent/treat nutrient deficiencies (e.g. iron or vitamin D) or when sports foods provide a convenient source of nutrients when it is impractical to eat whole foods. Finally, a few evidence-based performance supplements may contribute to optimal race performance when used according to best practice protocols to suit the triathlete’s goals and individual responsiveness

    Very Late Antigen-4 (α<inf>4</inf>β<inf>1</inf> Integrin) Targeted PET Imaging of Multiple Myeloma

    Get PDF
    Biomedical imaging techniques such as skeletal survey and 18F-fluorodeoxyglucose (FDG)/Positron Emission Tomography (PET) are frequently used to diagnose and stage multiple myeloma (MM) patients. However, skeletal survey has limited sensitivity as it can detect osteolytic lesions only after 30-50% cortical bone destruction, and FDG is a marker of cell metabolism that has limited sensitivity for intramedullary lesions in MM. Targeted, and non-invasive novel probes are needed to sensitively and selectively image the unique molecular signatures and cellular processes associated with MM. Very late antigen-4 (VLA-4; also called α4β1 integrin) is over-expressed on MM cells, and is one of the key mediators of myeloma cell adhesion to the bone marrow (BM) that promotes MM cell trafficking and drug resistance. Here we describe a proof-of-principle, novel molecular imaging strategy for MM tumors using a VLA-4 targeted PET radiopharmaceutical, 64Cu-CB-TE1A1P-LLP2A. Cell uptake studies in a VLA-4-positive murine MM cell line, 5TGM1, demonstrated receptor specific uptake (P<0.0001, block vs. non-block). Tissue biodistribution at 2 h of 64Cu-CB-TE1A1P-LLP2A in 5TGM1 tumor bearing syngeneic KaLwRij mice demonstrated high radiotracer uptake in the tumor (12±4.5%ID/g), and in the VLA-4 rich organs, spleen (8.8±1.0%ID/g) and marrow (11.6±2.0%ID/g). Small animal PET/CT imaging with 64Cu-CB-TE1A1P-LLP2A demonstrated high uptake in the 5TGM1 tumors (SUV 6.6±1.1). There was a 3-fold reduction in the in vivo tumor uptake in the presence of blocking agent (2.3±0.4). Additionally, 64Cu-CB-TE1A1P-LLP2A demonstrated high binding to the human MM cell line RPMI-8226 that was significantly reduced in the presence of the cold targeting agent. These results provide pre-clinical evidence that VLA-4-targeted imaging using 64Cu-CB-TE1A1P-LLP2A is a novel approach to imaging MM tumors. © 2013 Soodgupta et al

    A comparision of GHG emissions from UK field crop production under selected arable systems with reference to disease control

    Get PDF
    Crop disease not only threatens global food security by reducing crop production at a time of growing demand, but also contributes to greenhouse gas (GHG) emissions by reducing efficiency of N fertiliser use and farm operations and by driving land use change. GHG emissions associated with adoption of reduced tillage, organic and integrated systems of field crop production across the UK and selected regions are compared with emissions from conventional arable farming to assess their potential for climate change mitigation. The reduced tillage system demonstrated a modest (<20%) reduction in emissions in all cases, although in practice it may not be suitable for all soils and it is likely to cause problems with control of diseases spread on crop debris. There were substantial increases in GHG emissions associated with the organic and integrated systems at national level, principally due to soil organic carbon losses from land use change. At a regional level the integrated system shows the potential to deliver significant emission reductions. These results indicate that the conventional crop production system, coupled to reduced tillage cultivation where appropriate, is generally the best for producing high yields to minimise greenhouse gas emissions and contribute to global food security, although there may be scope for use of the integrated system on a regional basis. The control of crop disease will continue to have an essential role in both maintaining productivity and decreasing GHG emissions.Peer reviewe

    Water and sodium intake habits and status of ultra-endurance runners during a multi-stage ultra-marathon conducted in a hot ambient environment: an observational field based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anecdotal evidence suggests ultra-runners may not be consuming sufficient water through foods and fluids to maintenance euhydration, and present sub-optimal sodium intakes, throughout multi-stage ultra-marathon (MSUM) competitions in the heat. Subsequently, the aims were primarily to assess water and sodium intake habits of recreational ultra-runners during a five stage 225 km semi self-sufficient MSUM conducted in a hot ambient environment (T<sub>max</sub> range: 32°C to 40°C); simultaneously to monitor serum sodium concentration, and hydration status using multiple hydration assessment techniques.</p> <p>Methods</p> <p>Total daily, pre-stage, during running, and post-stage water and sodium ingestion of ultra-endurance runners (UER, <it>n</it> = 74) and control (CON, <it>n</it> = 12) through foods and fluids were recorded on Stages 1 to 4 by trained dietetic researchers using dietary recall interview technique, and analysed through dietary analysis software. Body mass (BM), hydration status, and serum sodium concentration were determined pre- and post-Stages 1 to 5.</p> <p>Results</p> <p>Water (overall mean (SD): total daily 7.7 (1.5) L/day, during running 732 (183) ml/h) and sodium (total daily 3.9 (1.3) g/day, during running 270 (151) mg/L) ingestion did not differ between stages in UER (<it>p</it> < 0.001 <it>vs</it>. CON). Exercise-induced BM loss was 2.4 (1.2)% (<it>p</it> < 0.001). Pre- to post-stage BM gains were observed in 26% of UER along competition. Pre- and post-stage plasma osmolality remained within normal clinical reference range (280 to 303 mOsmol/kg) in the majority of UER (<it>p</it> > 0.05 <it>vs</it>. CON pre-stage). Asymptomatic hyponatraemia (<135 mmol/L) was evident pre- and post-stage in <it>n</it> = 8 UER, corresponding to 42% of sampled participants. Pre- and post-stage urine colour, urine osmolality and urine/plasma osmolality ratio increased (<it>p</it> < 0.001) as competition progressed in UER, with no change in CON. Plasma volume and extra-cellular water increased (<it>p</it> < 0.001) 22.8% and 9.2%, respectively, from pre-Stage 1 to 5 in UER, with no change in CON.</p> <p>Conclusion</p> <p>Water intake habits of ultra-runners during MSUM conducted in hot ambient conditions appear to be sufficient to maintain baseline euhydration levels. However, fluid over-consumption behaviours were evident along competition, irrespective of running speed and gender. Normonatraemia was observed in the majority of ultra-runners throughout MSUM, despite sodium ingestion under benchmark recommendations.</p

    Intestinal Microbiota Composition of Interleukin-10 Deficient C57BL/6J Mice and Susceptibility to Helicobacter hepaticus-Induced Colitis

    Get PDF
    The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10[superscript −/−] mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10[superscript −/−] mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.National Institutes of Health (U.S.) (Grant NIH P01-CA26731)National Institutes of Health (U.S.) (Grant NIH P30ES0026731)National Institutes of Health (U.S.) (Grant NIH R01-OD011141

    Abnormal social reward processing in autism as indexed by pupillary responses to happy faces

    Get PDF
    Background: Individuals with Autism Spectrum Disorders (ASD) typically show impaired eye contact during social interactions. From a young age, they look less at faces than typically developing (TD) children and tend to avoid direct gaze. However, the reason for this behavior remains controversial; ASD children might avoid eye contact because they perceive the eyes as aversive or because they do not find social engagement through mutual gaze rewarding. Methods: We monitored pupillary diameter as a measure of autonomic response in children with ASD (n = 20, mean age = 12.4) and TD controls (n = 18, mean age = 13.7) while they looked at faces displaying different emotions. Each face displayed happy, fearful, angry or neutral emotions with the gaze either directed to or averted from the subjects. Results: Overall, children with ASD and TD controls showed similar pupillary responses; however, they differed significantly in their sensitivity to gaze direction for happy faces. Specifically, pupillary diameter increased among TD children when viewing happy faces with direct gaze as compared to those with averted gaze, whereas children with ASD did not show such sensitivity to gaze direction. We found no group differences in fixation that could explain the differential pupillary responses. There was no effect of gaze direction on pupil diameter for negative affect or neutral faces among either the TD or ASD group. Conclusions: We interpret the increased pupillary diameter to happy faces with direct gaze in TD children to reflect the intrinsic reward value of a smiling face looking directly at an individual. The lack of this effect in children with ASD is consistent with the hypothesis that individuals with ASD may have reduced sensitivity to the reward value of social stimuli

    Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS

    Get PDF
    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin
    corecore