47 research outputs found
Improving the clinical potential of ultra-high field fMRI using a model-free analysis method based on response consistency
Improving the clinical potential of ultra-high field fMRI using a model-free analysis method based on response consistency
OBJECTIVE To develop an analysis method that is sensitive to non-model-conform responses often encountered in ultra-high field presurgical planning fMRI. Using the consistency of time courses over a number of experiment repetitions, it should exclude low quality runs and generate activation maps that reflect the reliability of responses. MATERIALS AND METHODS 7 T fMRI data were acquired from six healthy volunteers: three performing purely motor tasks and three a visuomotor task. These were analysed with the proposed approach (UNBIASED) and the GLM. RESULTS UNBIASED results were generally less affected by false positive results than the GLM. Runs that were identified as being of low quality were confirmed to contain little or no activation. In two cases, regions were identified as activated in UNBIASED but not GLM results. Signal changes in these areas were time-locked to the task, but were delayed or transient. CONCLUSION UNBIASED is shown to be a reliable means of identifying consistent task-related signal changes regardless of response timing. In presurgical planning, UNBIASED could be used to rapidly generate reliable maps of the consistency with which eloquent brain regions are activated without recourse to task timing and despite modified hemodynamics
BOLD activation of the ventromedial prefrontal cortex in patients with late life depression and comparison participants
Learning about pain: the neural substrate of the prediction error for aversive events.
Associative learning is thought to depend on detecting mismatches between actual and expected experiences. With functional magnetic resonance imaging (FMRI), we studied brain activity during different types of mismatch in a paradigm where contrasting-colored lights signaled the delivery of painful heat, nonpainful warmth, or no stimulation. When painful heat stimulation was unexpected, there was increased FMRI signal intensity in areas of the hippocampus, superior frontal gyrus, cerebellum, and superior parietal gyrus that was not found with mismatch between expectation and delivery of nonpainful warmth stimulation. When painful heat stimulation was unexpectedly omitted, the FMRI signal intensity decreased in the left superior parietal gyrus and increased in the other regions. These contrasting activation patterns correspond to two different mismatch concepts in theories of associative learning (Rescorla-Wagner, temporal difference vs. Pearce-Hall, Mackintosh). Searching for interventions to specifically modulate activation of these brain regions therefore offers an approach to identifying new treatments for chronic pain, which often has a substantial associative learning component
Dissociating pain from its anticipation in the human brain.
The experience of pain is subjectively different from the fear and anxiety caused by threats of pain. Functional magnetic resonance imaging in healthy humans was applied to dissociate neural activation patterns associated with acute pain and its anticipation. Expectation of pain activated sites within the medial frontal lobe, insular cortex, and cerebellum distinct from, but close to, locations mediating pain experience itself. Anticipation of pain can in its own right cause mood changes and behavioral adaptations that exacerbate the suffering experienced by chronic pain patients. Selective manipulations of activity at these sites may offer therapeutic possibilities for treating chronic pain
