125 research outputs found
Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever caused by a newly identified virus strain, Bundibugyo, Uganda, 2007-2008
A confirmed Ebola haemorrhagic fever (EHF) outbreak in Bundibugyo, Uganda, November 2007-February 2008, was caused by a putative new species (Bundibugyo ebolavirus). It included 93 putative cases, 56 laboratory-confirmed cases, and 37 deaths (CFR = 25%). Study objectives are to describe clinical manifestations and case management for 26 hospitalised laboratory-confirmed EHF patients. Clinical findings are congruous with previously reported EHF infections. The most frequently experienced symptoms were non-bloody diarrhoea (81%), severe headache (81%), and asthenia (77%). Seven patients reported or were observed with haemorrhagic symptoms, six of whom died. Ebola care remains difficult due to the resource-poor setting of outbreaks and the infection-control procedures required. However, quality data collection is essential to evaluate case definitions and therapeutic interventions, and needs improvement in future epidemics. Organizations usually involved in EHF case management have a particular responsibility in this respect
Negative responses of highland pines to anthropogenic activities in inland Spain: a palaeoecological perspective
Palaeoecological evidence indicates that highland pines were dominant in extensive areas of the mountains of Central and Northern Iberia during the first half of the Holocene. However, following several millennia of anthropogenic pressure, their natural ranges are now severely reduced. Although pines have been frequently viewed as first-stage successional species responding positively to human disturbance, some recent palaeobotanical work has proposed fire disturbance and human deforestation as the main drivers of this vegetation turnover. To assess the strength of the evidence for this hypothesis and to identify other possible explanations for this scenario, we review the available information on past vegetation change in the mountains of northern inland Iberia. We have chosen data from several sites that offer good chronological control, including palynological records with microscopic charcoal data and sites with plant macro- and megafossil occurrence. We conclude that although the available long-term data are still fragmentary and that new methods are needed for a better understanding of the ecological history of Iberia, fire events and human activities (probably modulated by climate) have triggered the pine demise at different locations and different temporal scales. In addition, all palaeoxylological, palynological and charcoal results obtained so far are fully compatible with a rapid human-induced ecological change that could have caused a range contraction of highland pines in western Iberia
The Use of a Mobile Laboratory Unit in Support of Patient Management and Epidemiological Surveillance during the 2005 Marburg Outbreak in Angola
A mobile laboratory unit (MLU) was deployed to Uige, Angola as part of the World Health Organization response to an outbreak of viral hemorrhagic fever caused by Marburg virus (MARV). Utilizing mainly quantitative real-time PCR assays, this laboratory provided specific MARV diagnostics in the field. The MLU operated for 88 consecutive days allowing MARV-specific diagnostic response in <4 hours from sample receiving. Most cases were found among females in the child-bearing age and in children less than five years of age including a high number of paediatric cases implicating breastfeeding as potential transmission route. Oral swabs were identified as a useful alternative specimen source to the standard whole blood/serum specimens for patients refusing blood draw. There was a high concordance in test results between the MLU and the reference laboratory in Luanda operated by the US Centers for Disease Control and Prevention. The MLU was an important outbreak response asset providing valuable support in patient management and epidemiological surveillance. Field laboratory capacity should be expanded and made an essential part of any future outbreak investigation
The T1799A point mutation is present in posterior uveal melanoma
An activating mutation in exon 15 of the BRAF gene is present in a high proportion of cutaneous pigmented lesions. Until recently this mutation had however only been identified in one case of posterior uveal melanoma. Despite this apparent lack of the BRAF mutation, inappropriate downstream activation of the Ras/Raf/MAPK pathway has been described in posterior uveal melanoma. Based on the already recognised morphological and cytogenetic heterogeneity in uveal melanoma, we hypothesised that the BRAF mutation may be present in uveal melanoma but only in some of the tumour cells. In this study, we analysed 20 ciliary body and 30 choroidal melanomas using a nested PCR-based technique resulting in the amplification of a nested product only if the mutation was present. This sensitive technique can identify mutated DNA in the presence of wild-type DNA. The mutation was identified in 4 of 20 (20%) ciliary body and 11 of 30 (40%) choroidal melanomas. Further analysis of separate areas within the same choroidal melanoma demonstrated that the mutation was not present in the entire tumour. In conclusion, the T1799A BRAF mutation is present in a proportion of posterior uveal melanomas but within these tumours the distribution of the mutation is heterogeneous
Herschel images of Fomalhaut An extrasolar Kuiper belt at the height of its dynamical activity
Context. Fomalhaut is a young (2 ± 1 × 108 years), nearby (7.7 pc), 2 M⊙ star that is suspected to harbor an infant planetary system, interspersed with one or more belts of dusty debris.
Aims. We present far-infrared images obtained with the Herschel Space Observatory with an angular resolution between 5.7′′ and 36.7′′ at wavelengths between 70 μm and 500 μm. The images show the main debris belt in great detail. Even at high spatial resolution, the belt appears smooth. The region in between the belt and the central star is not devoid of material; thermal emission is observed here as well. Also at the location of the star, excess emission is detected. We aim to construct a consistent image of the Fomalhaut system.
Methods. We use a dynamical model together with radiative-transfer tools to derive the parameters of the debris disk. We include detailed models of the interaction of the dust grains with radiation, for both the radiation pressure and the temperature determination. Comparing these models to the spatially resolved temperature information contained in the images allows us to place strong constraints on the presence of grains that will be blown out of the system by radiation pressure. We use this to derive the dynamical parameters of the system.
Results. The appearance of the belt points toward a remarkably active system in which dust grains are produced at a very high rate by a collisional cascade in a narrow region filled with dynamically excited planetesimals. Dust particles with sizes below the blow-out size are abundantly present. The equivalent of 2000 one-km-sized comets are destroyed every day, out of a cometary reservoir amounting to 110 Earth masses. From comparison of their scattering and thermal properties, we find evidence that the dust grains are fluffy aggregates, which indicates a cometary origin. The excess emission at the location of the star may be produced by hot dust with a range of temperatures, but may also be due to gaseous free-free emission from a stellar wind
The Vega debris disc: A view from Herschel
We present five band imaging of the Vega debris disc obtained using the Herschel Space Observatory. These data span a wavelength range of 70–500 μm with full-width half-maximum angular resolutions of 5.6–36.9”. The disc is well resolved in all bands, with the ring structure visible at 70 and 160 μm. Radial profiles of the disc surface brightness are produced, and a disc radius of 11” (~85 AU) is determined. The disc is seen to have a smooth structure thoughout the entire wavelength range, suggesting that the disc is in a steady state, rather than being an ephemeral structure caused by the recent collision of two large planetesimals
Revisiting perioperative chemotherapy: the critical importance of targeting residual cancer prior to wound healing
<p>Abstract</p> <p>Background</p> <p>Scientists and physicians have long noted similarities between the general behavior of a cancerous tumor and the physiological process of wound healing. But it may be during metastasis that the parallels between cancer and wound healing are most pronounced. And more particularly and for the reasons detailed in this paper, any cancer remaining after the removal of a solid tumor, whether found in micrometastatic deposits in the stroma or within the circulation, may be heavily dependent on wound healing pathways for its further survival and proliferation.</p> <p>Discussion</p> <p>If cancer cells can hijack the wound healing process to facilitate their metastatic spread and survival, then the period immediately after surgery may be a particularly vulnerable period of time for the host, as wound healing pathways are activated and amplified after the primary tumor is removed. Given that we often wait 30 days or more after surgical removal of the primary tumor before initiating adjuvant chemotherapy to allow time for the wound to heal, this paper challenges the wisdom of that clinical paradigm, providing a theoretical rationale for administering therapy during the perioperative period.</p> <p>Summary</p> <p>Waiting for wound healing to occur before initiating adjuvant therapies may be seriously compromising their effectiveness, and patients subsequently rendered incurable as a result of this wait. Clinical trials to establish the safety and effectiveness of administering adjuvant therapies perioperatively are needed. These therapies should target not only the residual cancer cells, but also the wound healing pathway utilized by these cells to proliferate and metastasize.</p
A Project Portfolio Management Approach to Tacklingthe Exploration/Exploitation Trade-off
Organizational ambidexterity (OA) is an essen-tial capability for surviving in dynamic business environ-ments that advocates the simultaneous engagement inexploration and exploitation. Over the last decades,knowledge on OA has substantially matured, coveringinsights into antecedents, outcomes, and moderators of OA.However, there is little prescriptive knowledge that offersguidance on how to put OA into practice and to tackle thetrade-off between exploration and exploitation. To addressthis gap, the authors adopt the design science researchparadigm and propose an economic decision model asartifact. The decision model assists organizations inselecting and scheduling exploration and exploitation pro-jects to become ambidextrous in an economically reason-able manner. As for justificatory knowledge, the decisionmodel draws from prescriptive knowledge on projectportfolio management and value-based management, andfrom descriptive knowledge related to OA to structure thefield of action. To evaluate the decision model, its designspecification is discussed against theory-backed designobjectives and with industry experts. The paper alsoinstantiates the decision model as a software prototype andapplies the prototype to a case based on real-world data
Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells
<p>Abstract</p> <p>Background</p> <p>Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells.</p> <p>Methods</p> <p>Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured <it>in vivo </it>with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed <it>ex vivo </it>with fluorescence imaging.</p> <p>Results</p> <p>We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells.</p> <p>Conclusion</p> <p>The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.</p
- …
