35 research outputs found
Cloning of a Novel Protein Interacting with BRS-3 and Its Effects in Wound Repair of Bronchial Epithelial Cells
Bombesin receptor subtype 3 (BRS-3), the orphan bombesin receptor, may play a role in the regulation of stress responses in lung and airway epithelia. Bombesin receptor activated protein (BRAP )is a novel protein we found in our previous study which interacts with BRS-3. This study was designed to observe the subcellular location and wound repair function of BRAP in human bronchial epithelial cells (HBECs). BRAP ORF was amplified by RT-PCR and ligated to pEGFP-C1 vector, and then the recombinant plasmid pEGFP-C1-BRAP was transfected into Hela cells. The location of BRAP protein was observed by laser confocal microscope, and the expression of it was analyzed by Western-blot. At the same time,we built the recombinant plasmid pcDNA3.1(+)-BRAP, transfected it into HBECs and observed its impact on cell cycle and wound repair of HBECs. The results showed that BRAP locates in membrane and cytoplasm and increases significantly in transfected cells. Flow cytometry results demonstrated that the recombinant plasmid increases S phase plus G2 phase of cell cycle by 25%. Microscopic video analysis system showed that the repair index of wounded HBECs increases by 20% through stable expression of BRAP. The present study demonstrated that BRAP locates in the membrane and cytoplasm, suggesting that this protein is a cytoplasm protein, which promotes cell cycle and wound repair of HBECs
Dissecting Epigenetic Silencing Complexity in the Mouse Lung Cancer Suppressor Gene Cadm1
Disease-oriented functional analysis of epigenetic factors and their regulatory mechanisms in aberrant silencing is a prerequisite for better diagnostics and therapy. Yet, the precise mechanisms are still unclear and complex, involving the interplay of several effectors including nucleosome positioning, DNA methylation, histone variants and histone modifications. We investigated the epigenetic silencing complexity in the tumor suppressor gene Cadm1 in mouse lung cancer progenitor cell lines, exhibiting promoter hypermethylation associated with transcriptional repression, but mostly unresponsive to demethylating drug treatments. After predicting nucleosome positions and transcription factor binding sites along the Cadm1 promoter, we carried out single-molecule mapping with DNA methyltransferase M.SssI, which revealed in silent promoters high nucleosome occupancy and occlusion of transcription factor binding sites. Furthermore, M.SssI maps of promoters varied within and among the different lung cancer cell lines. Chromatin analysis with micrococcal nuclease also indicated variations in nucleosome positioning to have implications in the binding of transcription factors near nucleosome borders. Chromatin immunoprecipitation showed that histone variants (H2A.Z and H3.3), and opposing histone modification marks (H3K4me3 and H3K27me3) all colocalized in the same nucleosome positions that is reminiscent of epigenetic plasticity in embryonic stem cells. Altogether, epigenetic silencing complexity in the promoter region of Cadm1 is not only defined by DNA hypermethylation, but high nucleosome occupancy, altered nucleosome positioning, and ‘bivalent’ histone modifications, also likely contributed in the transcriptional repression of this gene in the lung cancer cells. Our results will help define therapeutic intervention strategies using epigenetic drugs in lung cancer
Identification of Markers that Distinguish Monocyte-Derived Fibrocytes from Monocytes, Macrophages, and Fibroblasts
The processes that drive fibrotic diseases are complex and include an influx of peripheral blood monocytes that can differentiate into fibroblast-like cells called fibrocytes. Monocytes can also differentiate into other cell types, such as tissue macrophages. The ability to discriminate between monocytes, macrophages, fibrocytes, and fibroblasts in fibrotic lesions could be beneficial in identifying therapies that target either stromal fibroblasts or fibrocytes. and in sections from human lung. We found that markers such as CD34, CD68, and collagen do not effectively discriminate between the four cell types. In addition, IL-4, IL-12, IL-13, IFN-γ, and SAP differentially regulate the expression of CD32, CD163, CD172a, and CD206 on both macrophages and fibrocytes. Finally, CD49c (α3 integrin) expression identifies a subset of fibrocytes, and this subset increases with time in culture.These results suggest that discrimination of monocytes, macrophages, fibrocytes, and fibroblasts in fibrotic lesions is possible, and this may allow for an assessment of fibrocytes in fibrotic diseases
Striatal and extrastriatal dopamine transporter levels relate to cognition in Lewy body diseases: an 11C altropane positron emission tomography study
LAV/HTLV III presence in peripheral blood lymphocytes of seropositive young hemophiliacs
Abstract
Recent studies indicate a high prevalence of seropositivity to the lymphadenopathy-associated virus/human T-lymphotropic virus (type III) among individuals with hemophilia exposed to clotting factor concentrates prepared from large donor pools. The peripheral blood lymphocytes of 19 young seropositive patients with inherited bleeding disorders were examined for the presence of this virus by coculture with phytohemagglutinin-stimulated lymphocytes. Viral isolates were obtained from six of 19 patients. While none of these patients have developed the acquired immunodeficiency syndrome (AIDS) or AIDS-related complex, five of them had lymphadenopathy in two noncontiguous areas, and two showed clinically symptomatic enlarged tonsils and adenoids. Of the 13 patients in whom virus was not demonstrated, five were judged clinically normal and five had mild lymphadenopathy in one anatomical area. These results suggest that as many as 33% of hemophiliacs (six of 19 patients studied), who have circulating antibodies to mature viral proteins, have viral-infected peripheral blood lymphocytes capable of infecting other lymphocytes in vitro.</jats:p
Robots that imagine – can hippocampal replay be utilized for robotic mnemonics?
Neurophysiological studies on hippocampal replay, which was a phenomenon first shown in rodents as the reactivation of previously active hippocampal cells, has shown it to be potentially important for mnemonic functions such as memory consolidation/recall, learning and planning. Since its discovery, a small number of neuronal models have been developed to attempt to describe the workings of this phenomenon. But it may be possible to utilize hippocampal replay to help solve some of the difficult challenges that face robotic cognition, learning and memory, and/or be used for the development of biomimetic robotics. Here we review these models in the hope of learning their workings, and see that their neural network structures may be integrated into current neural network based algorithms for robotic spatial memory, and perhaps are particularly suited for reinforcement learning paradigms
