228 research outputs found
Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters
Recent progress in studies of globular clusters has shown that they are not
simple stellar populations, being rather made of multiple generations. Evidence
stems both from photometry and spectroscopy. A new paradigm is then arising for
the formation of massive star clusters, which includes several episodes of star
formation. While this provides an explanation for several features of globular
clusters, including the second parameter problem, it also opens new
perspectives about the relation between globular clusters and the halo of our
Galaxy, and by extension of all populations with a high specific frequency of
globular clusters, such as, e.g., giant elliptical galaxies. We review progress
in this area, focusing on the most recent studies. Several points remain to be
properly understood, in particular those concerning the nature of the polluters
producing the abundance pattern in the clusters and the typical timescale, the
range of cluster masses where this phenomenon is active, and the relation
between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review
Eosinophils are key regulators of perivascular adipose tissue and vascular functionality
Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has
been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident
immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils in
mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in
mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil
reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced
bioavailability of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil
reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after
activation of adipocyte-expressed β3 adrenoceptors by catecholamines, and identified eosinophils as
a novel source of these mediators. We conclude that adipose tissue eosinophils play a key role in the
regulation of normal PVAT anti-contractile function
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
Cellular Growth Kinetics Distinguish a Cyclophilin Inhibitor from an HSP90 Inhibitor as a Selective Inhibitor of Hepatitis C Virus
During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA) and heat-shock protein 90 (HSP90) which have each been reported to inhibit replication of hepatitis C virus (HCV). By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA), exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth
Enhanced text spacing improves reading performance in individuals with macular disease
The search by many investigators for a solution to the reading problems encountered by individuals with no central vision has been long and, to date, not very fruitful. Most textual manipulations, including font size, have led to only modest gains in reading speed. Previous work on spatial integrative properties of peripheral retina suggests that 'visual crowding' may be a major factor contributing to inefficient reading. Crowding refers to the fact that juxtaposed targets viewed eccentrically may be difficult to identify. The purpose of this study was to assess the combined effects of line spacing and word spacing on the ability of individuals with age-related macular degeneration (ARMD) to read short passages of text that were printed with either high (87.5%) or low contrast (17.5%) letters. Low contrast text was used to avoid potential ceiling effects and to mimic a possible reduction in letter contrast with light scatter from media opacities. For both low and high contrast text, the fastest reading speeds we measured were for passages of text with double line and double word spacing. In comparison with standard single spacing, double word/line spacing increased reading speed by approximately 26% with high contrast text (p < 0.001), and by 46% with low contrast text (p < 0.001). In addition, double line/word spacing more than halved the number of reading errors obtained with single spaced text. We compare our results with previous reading studies on ARMD patients, and conclude that crowding is detrimental to reading and that its effects can be reduced with enhanced text spacing. Spacing is particularly important when the contrast of the text is reduced, as may occur with intraocular light scatter or poor viewing conditions. We recommend that macular disease patients should employ double line spacing and double-character word spacing to maximize their reading efficiency. © 2013 Blackmore-Wright et al
Perivascular Adipose Tissue and Its Role in Type 2 Diabetes and Cardiovascular Disease
Obesity is associated with insulin resistance, hypertension, and cardiovascular disease, but the mechanisms underlying these associations are incompletely understood. Microvascular dysfunction may play an important role in the pathogenesis of both insulin resistance and hypertension in obesity. Adipose tissue-derived substances (adipokines) and especially inflammatory products of adipose tissue control insulin sensitivity and vascular function. In the past years, adipose tissue associated with the vasculature, or perivascular adipose tissue (PAT), has been shown to produce a variety of adipokines that contribute to regulation of vascular tone and local inflammation. This review describes our current understanding of the mechanisms linking perivascular adipose tissue to vascular function, inflammation, and insulin resistance. Furthermore, we will discuss mechanisms controlling the quantity and adipokines secretion by PAT
Minimal-invasive approach for penetrating Crohn’s disease is not associated with increased complications
C. elegans Germ Cells Show Temperature and Age-Dependent Expression of Cer1, a Gypsy/Ty3-Related Retrotransposon
Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15°C and no detectable expression at 25°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology
Modeling CICR in rat ventricular myocytes: voltage clamp studies
<p>Abstract</p> <p>Background</p> <p>The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect <it>Ca</it><sup>2+ </sup>loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR <it>Ca</it><sup>2+ </sup>release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic <it>Ca</it><sup>2+ </sup>concentration ([<it>Ca</it><sup>2+</sup>]<it><sub>myo</sub></it>).</p> <p>Methods</p> <p>The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed <it>Ca</it><sup>2+ </sup>channels (trigger-channel and release-channel). It releases <it>Ca</it><sup>2+ </sup>flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[<it>Ca</it><sup>2+</sup>]<it><sub>myo</sub></it>.</p> <p>Results</p> <p>Our model reproduces measured VC data published by several laboratories, and generates graded <it>Ca</it><sup>2+ </sup>release at high <it>Ca</it><sup>2+ </sup>gain in a homeostatically-controlled environment where [<it>Ca</it><sup>2+</sup>]<it><sub>myo </sub></it>is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR <it>Ca</it><sup>2+ </sup>release, its activation by trigger <it>Ca</it><sup>2+</sup>, and its refractory characteristics mediated by the luminal SR <it>Ca</it><sup>2+ </sup>sensor. Proper functioning of the DCU, sodium-calcium exchangers and SERCA pump are important in achieving negative feedback control and hence <it>Ca</it><sup>2+ </sup>homeostasis.</p> <p>Conclusions</p> <p>We examine the role of the above <it>Ca</it><sup>2+ </sup>regulating mechanisms in handling various types of induced disturbances in <it>Ca</it><sup>2+ </sup>levels by quantifying cellular <it>Ca</it><sup>2+ </sup>balance. Our model provides biophysically-based explanations of phenomena associated with CICR generating useful and testable hypotheses.</p
- …
