3,495 research outputs found
Controversies in the management of primary sclerosing cholangitis
Primary sclerosing cholangitis (PSC) remains a rare but significant disease, which affects mainly young males in association with inflammatory bowel disease. There have been few advances in the understanding of the pathogenesis of the condition and no therapeutics with proven mortality benefit aside from liver transplantation. There remain areas of controversy in the management of PSC which include the differentiation from other cholangiopathies, in particular immunoglobulin G4 related sclerosing cholangitis, the management of dominant biliary strictures, and the role of ursodeoxycholic acid. In addition, the timing of liver transplantation in PSC remains difficult to predict with standard liver severity scores. In this review, we address these controversies and highlight the latest evidence base in the management of PSC
Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene
An ability to precisely regulate the quantity and location of molecular flux
is of value in applications such as nanoscale 3D printing, catalysis, and
sensor design. Barrier materials containing pores with molecular dimensions
have previously been used to manipulate molecular compositions in the gas
phase, but have so far been unable to offer controlled gas transport through
individual pores. Here, we show that gas flux through discrete angstrom-sized
pores in monolayer graphene can be detected and then controlled using
nanometer-sized gold clusters, which are formed on the surface of the graphene
and can migrate and partially block a pore. In samples without gold clusters,
we observe stochastic switching of the magnitude of the gas permeance, which we
attribute to molecular rearrangements of the pore. Our molecular valves could
be used, for example, to develop unique approaches to molecular synthesis that
are based on the controllable switching of a molecular gas flux, reminiscent of
ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog
Pressure dependent electronic properties of MgO polymorphs: A first-principles study of Compton profiles and autocorrelation functions
The first-principles periodic linear combination of atomic orbitals method
within the framework of density functional theory implemented in the CRYSTAL06
code has been applied to explore effect of pressure on the Compton profiles and
autocorrelation functions of MgO. Calculations are performed for the B1, B2,
B3, B4, B8_1 and h-MgO polymorphs of MgO to compute lattice constants and bulk
moduli. The isothermal enthalpy calculations predict that B4 to B8_1, h-MgO to
B8_1, B3 to B2, B4 to B2 and h-MgO to B2 transitions take place at 2, 9, 37, 42
and 64 GPa respectively. The high pressure transitions B8_1 to B2 and B1 to B2
are found to occur at 340 and 410 GPa respectively. The pressure dependent
changes are observed largely in the valence electrons Compton profiles whereas
core profiles are almost independent of the pressure in all MgO polymorphs.
Increase in pressure results in broadening of the valence Compton profiles. The
principal maxima in the second derivative of Compton profiles shifts towards
high momentum side in all structures. Reorganization of momentum density in the
B1 to B2 structural phase transition is seen in the first and second
derivatives before and after the transition pressure. Features of the
autocorrelation functions shift towards lower r side with increment in
pressure.Comment: 19 pages, 8 figures, accepted for publication in Journal of Materials
Scienc
Cell cycle progression or translation control is not essential for vesicular stomatitis virus oncolysis of hepatocellular carcinoma.
The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combination therapies. After having identified defects in the signalling cascade of type I interferon induction, responsible for attenuated antiviral responses in human HCC cell lines, we have now investigated the role of cell proliferation and translation initiation. Cell cycle progression and translation initiation factors eIF4E and eIF2Bepsilon have been recently identified as key regulators of VSV permissiveness in T-lymphocytes and immortalized mouse embryonic fibroblasts, respectively. Here, we show that in HCC, decrease of cell proliferation by cell cycle inhibitors or siRNA-mediated reduction of G(1) cyclin-dependent kinase activities (CDK4) or cyclin D1 protein expression, do not significantly alter viral growth. Additionally, we demonstrate that translation initiation factors eIF4E and eIF2Bepsilon are negligible in sustaining VSV replication in HCC. Taken together, these results indicate that cellular proliferation and the initiation phase of cellular protein synthesis are not essential for successful VSV oncolysis of HCC. Moreover, our observations indicate the importance of cell-type specificity for VSV oncolysis, an important aspect to be considered in virotherapy applications in the future
Different atmospheric moisture divergence responses to extreme and moderate El Niños
On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
Estimating Post-Synaptic Effects for Online Training of Feed-Forward SNNs
Facilitating online learning in spiking neural networks (SNNs) is a key step
in developing event-based models that can adapt to changing environments and
learn from continuous data streams in real-time. Although forward-mode
differentiation enables online learning, its computational requirements
restrict scalability. This is typically addressed through approximations that
limit learning in deep models. In this study, we propose Online Training with
Postsynaptic Estimates (OTPE) for training feed-forward SNNs, which
approximates Real-Time Recurrent Learning (RTRL) by incorporating temporal
dynamics not captured by current approximations, such as Online Training
Through Time (OTTT) and Online Spatio-Temporal Learning (OSTL). We show
improved scaling for multi-layer networks using a novel approximation of
temporal effects on the subsequent layer's activity. This approximation incurs
minimal overhead in the time and space complexity compared to similar
algorithms, and the calculation of temporal effects remains local to each
layer. We characterize the learning performance of our proposed algorithms on
multiple SNN model configurations for rate-based and time-based encoding. OTPE
exhibits the highest directional alignment to exact gradients, calculated with
backpropagation through time (BPTT), in deep networks and, on time-based
encoding, outperforms other approximate methods. We also observe sizeable gains
in average performance over similar algorithms in offline training of Spiking
Heidelberg Digits with equivalent hyper-parameters (OTTT/OSTL - 70.5%; OTPE -
75.2%; BPTT - 78.1%)
Correlation of blood pressure with Body Mass Index (BMI) and Waist to Hip Ratio (WHR) in middle aged men
Obesity and cardiovascular risks are closely associated. Hypertension is themost common and early complication of obesity. Obesity is measured with different parameters like Body Mass Index, Waist to Hip Ratio etc. In the present study we have tried to link parameters of obesity with hypertension. We have found that in hypertensive middle aged Indian males diastolic blood pressure showed a better correlation with Waist to Hip Ratio rather than with Body Mass Index.KEW WORDS: Obesity; Hypertension; Body Mass Index (BMI); Waist to Hip Ratio (WHR
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
- …
