37 research outputs found
Modelling avalanches in martensites
Solids subject to continuous changes of temperature or mechanical load often
exhibit discontinuous avalanche-like responses. For instance, avalanche
dynamics have been observed during plastic deformation, fracture, domain
switching in ferroic materials or martensitic transformations. The statistical
analysis of avalanches reveals a very complex scenario with a distinctive lack
of characteristic scales. Much effort has been devoted in the last decades to
understand the origin and ubiquity of scale-free behaviour in solids and many
other systems. This chapter reviews some efforts to understand the
characteristics of avalanches in martensites through mathematical modelling.Comment: Chapter in the book "Avalanches in Functional Materials and
Geophysics", edited by E. K. H. Salje, A. Saxena, and A. Planes. The final
publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-45612-6_
Electrospun fluorescent nanofibers for explosive detection
Development of an instant on-site visual detection method for 2,4,6 trinitrotoluene (TNT) has become a significant requirement of the hour towards a secured society and a greener environment. Despite momentous advances in the respective field, a portable and reliable method for quick and selective detection of TNT still poses a challenge to many reasons attributing to inappropriate usage in subordinate areas and untrained personnel. The recent effort on the fluorescent based detection represents as one of easy method in terms of fast response time and simple on/off detection. Therefore, this chapter provides a consolidation of information relating to recent advances in fluorescence based TNT detection.Further, the main focus will be towards advances in the nanofibers based TNT detection and their reason to improving thesensitivity. © Springer International Publishing Switzerland 2015
Grading facial expression is a sensitive means to detect grimace differences in orofacial pain in a rat model
A structural basis of the interactions between leucine-rich repeats and protein ligands
THE leucine-rich repeat is a recently characterized structural motif(1) used in molecular recognition processes as diverse as signal transduction, cell adhesion, cell development, DNA repair and RNA processing(2). We present here the crystal structure at 2.5 Angstrom resolution of the complex between ribonuclease A and ribonculease inhibitor, a protein built entirely of leucine-rich repeats, The unusual non-globular structure of ribonuclease inhibitor, its solvent-exposed parallel beta-sheet and the conformational flexibility of the structure are used in the interaction; they appear to be the principal reasons for the effectiveness of leucine-rich repeats as protein-binding motifs, The structure can serve as a model for the interactions of other proteins containing leucine-rich repeats with their ligands
