396 research outputs found
Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients
<br>Background:Prostate cancer cell growth is dependent upon androgen receptor (AR) activation, which is regulated by specific kinases. The aim of the current study is to establish if AR phosphorylation by Cdk1 or ERK1/2 is of prognostic significance.</br> <br>Methods: Scansite 2.0 was utilised to predict which AR sites are phosphorylated by Cdk1 and ERK1/2. Immunohistochemistry for these sites was then performed on 90 hormone-naive prostate cancer specimens. The interaction between Cdk1/ERK1/2 and AR phosphorylation was investigated in vitro using LNCaP cells.</br><br>Results:Phosphorylation of AR at serine 515 (pAR(S515)) and PSA at diagnosis were independently associated with decreased time to biochemical relapse. Cdk1 and pCdk1(161), but not ERK1/2, correlated with pAR(S515). High expression of pAR(S515) in patients with a PSA at diagnosis of ≤20 ng ml(-1) was associated with shorter time to biochemical relapse (P=0.019). This translated into a reduction in disease-specific survival (10-year survival, 38.1% vs 100%, P<0.001). In vitro studies demonstrated that treatment with Roscovitine (a Cdk inhibitor) caused a reduction in pCdk1(161) expression, pAR(S515)expression and cellular proliferation.</br> <br>Conclusion: In prostate cancer patients with PSA at diagnosis of ≤20 ng ml(-1), phosphorylation of AR at serine 515 by Cdk1 may be an independent prognostic marker.</br>
A Self-Reference False Memory Effect in the DRM Paradigm: Evidence from Eastern and Western Samples
It is well established that processing information in relation to oneself (i.e., selfreferencing) leads to better memory for that information than processing that same information in relation to others (i.e., other-referencing). However, it is unknown whether self-referencing also leads to more false memories than other-referencing. In the current two experiments with European and East Asian samples, we presented participants the Deese-Roediger/McDermott (DRM) lists together with their own name or other people’s name (i.e., “Trump” in Experiment 1 and “Li Ming” in Experiment 2). We found consistent results across the two experiments; that is, in the self-reference condition, participants had higher true and false memory rates compared to those in the other-reference condition. Moreover, we found that selfreferencing did not exhibit superior mnemonic advantage in terms of net accuracy compared to other-referencing and neutral conditions. These findings are discussed in terms of theoretical frameworks such as spreading activation theories and the fuzzytrace theory. We propose that our results reflect the adaptive nature of memory in the sense that cognitive processes that increase mnemonic efficiency may also increase susceptibility to associative false memories
Brain computer tomography in critically ill patients -- a prospective cohort study
<p>Abstract</p> <p>Background</p> <p>Brain computer tomography (brain CT) is an important imaging tool in patients with intracranial disorders. In ICU patients, a brain CT implies an intrahospital transport which has inherent risks. The proceeds and consequences of a brain CT in a critically ill patient should outweigh these risks. The aim of this study was to critically evaluate the diagnostic and therapeutic yield of brain CT in ICU patients.</p> <p>Methods</p> <p>In a prospective observational study data were collected during one year on the reasons to request a brain CT, expected abnormalities, abnormalities found by the radiologist and consequences for treatment. An “expected abnormality” was any finding that had been predicted by the physician requesting the brain CT. A brain CT was “diagnostically positive”, if the abnormality found was new or if an already known abnormality was increased. It was “diagnostically negative” if an already known abnormality was unchanged or if an expected abnormality was not found. The treatment consequences of the brain CT, were registered as “treatment as planned”, “treatment changed, not as planned”, “treatment unchanged”.</p> <p>Results</p> <p>Data of 225 brain CT in 175 patients were analyzed. In 115 (51%) brain CT the abnormalities found were new or increased known abnormalities. 115 (51%) brain CT were found to be diagnostically positive. In the medical group 29 (39%) of brain CT were positive, in the surgical group 86 (57%), <it>p</it> 0.01. After a positive brain CT, in which the expected abnormalities were found, treatment was changed as planned in 33%, and in 19% treatment was changed otherwise than planned.</p> <p>Conclusions</p> <p>The results of this study show that the diagnostic and therapeutic yield of brain CT in critically ill patients is moderate. The development of guidelines regarding the decision rules for performing a brain CT in ICU patients is needed.</p
Core fragmentation and Toomre stability analysis of W3(H2O): A case study of the IRAM NOEMA large program CORE
The fragmentation mode of high-mass molecular clumps and the properties of the central rotating structures surrounding the most luminous objects have yet to be comprehensively characterised. Using the IRAM NOrthern Extended Millimeter Array (NOEMA) and the IRAM 30-m telescope, the CORE survey has obtained high-resolution observations of 20 well-known highly luminous star-forming regions in the 1.37 mm wavelength regime in both line and dust continuum emission. We present the spectral line setup of the CORE survey and a case study for W3(H2O). At ~0.35" (700 AU at 2 kpc) resolution, the W3(H2O) clump fragments into two cores (West and East), separated by ~2300 AU. Velocity shifts of a few km/s are observed in the dense-gas tracer, CH3CN, across both cores, consistent with rotation and perpendicular to the directions of two bipolar outflows, one emanating from each core. The kinematics of the rotating structure about W3(H2O) W shows signs of differential rotation of material, possibly in a disk-like object. The observed rotational signature around W3(H2O) E may be due to a disk-like object, an unresolved binary (or multiple) system, or a combination of both. We fit the emission of CH3CN (12-11) K = 4-6 and derive a gas temperature map with a median temperature of ~165 K across W3(H2O). We create a Toomre Q map to study the stability of the rotating structures against gravitational instability. The rotating structures appear to be Toomre unstable close to their outer boundaries, with a possibility of further fragmentation in the differentially-rotating core W3(H2O) W. Rapid cooling in the Toomre-unstable regions supports the fragmentation scenario. Combining millimeter dust continuum and spectral line data toward the famous high-mass star-forming region W3(H2O), we identify core fragmentation on large scales, and indications for possible disk fragmentation on smaller spatial scales
Costs and effects of screening and treating low risk women with a singleton pregnancy for asymptomatic bacteriuria, the ASB study
<p>Abstract</p> <p>Background</p> <p>The prevalence of asymptomatic bacteriuria (ASB) in pregnancy is 2-10% and is associated with both maternal and neonatal adverse outcomes as pyelonephritis and preterm delivery. Antibiotic treatment is reported to decrease these adverse outcomes although the existing evidence is of poor quality.</p> <p>Methods/Design</p> <p>We plan a combined screen and treat study in women with a singleton pregnancy. We will screen women between 16 and 22 weeks of gestation for ASB using the urine dipslide technique. The dipslide is considered positive when colony concentration ≥10<sup>5</sup> colony forming units (CFU)/mL of a single microorganism or two different colonies but one ≥10<sup>5</sup> CFU/mL is found, or when Group B Streptococcus bacteriuria is found in any colony concentration. Women with a positive dipslide will be randomly allocated to receive nitrofurantoin or placebo 100 mg twice a day for 5 consecutive days (double blind). Primary outcomes of this trial are maternal pyelonephritis and/or preterm delivery before 34 weeks. Secondary outcomes are neonatal and maternal morbidity, neonatal weight, time to delivery, preterm delivery rate before 32 and 37 weeks, days of admission in neonatal intensive care unit, maternal admission days and costs.</p> <p>Discussion</p> <p>This trial will provide evidence for the benefit and cost-effectiveness of dipslide screening for ASB among low risk women at 16–22 weeks of pregnancy and subsequent nitrofurantoin treatment.</p> <p>Trial registration</p> <p>Dutch trial registry: NTR-3068</p
X-ray emission from isolated neutron stars
X-ray emission is a common feature of all varieties of isolated neutron stars
(INS) and, thanks to the advent of sensitive instruments with good
spectroscopic, timing, and imaging capabilities, X-ray observations have become
an essential tool in the study of these objects. Non-thermal X-rays from young,
energetic radio pulsars have been detected since the beginning of X-ray
astronomy, and the long-sought thermal emission from cooling neutron star's
surfaces can now be studied in detail in many pulsars spanning different ages,
magnetic fields, and, possibly, surface compositions. In addition, other
different manifestations of INS have been discovered with X-ray observations.
These new classes of high-energy sources, comprising the nearby X-ray Dim
Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the
Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to
several tens of confirmed members, plus many candidates, and allow us to study
a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant
Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from
pulsars and their systems", held in April, 201
Fragmentation and disk formation during high-mass star formation: The IRAM NOEMA (Northern Extended Millimeter Array) large program CORE
Aims: We aim to understand the fragmentation as well as the disk formation, outflow generation and chemical processes during high-mass star formation on spatial scales of individual cores. Methods: Using the IRAM Northern Extended Millimeter Array (NOEMA) in combination with the 30m telescope, we have observed in the IRAM large program CORE the 1.37mm continuum and spectral line emission at high angular resolution (~0.4'') for a sample of 20 well-known high-mass star-forming regions with distances below 5.5kpc and luminosities larger than 10^4Lsun. Results: We present the overall survey scope, the selected sample, the observational setup and the main goals of CORE. Scientifically, we concentrate on the mm continuum emission on scales on the order of 1000AU. We detect strong mm continuum emission from all regions, mostly due to the emission from cold dust. The fragmentation properties of the sample are diverse. We see extremes where some regions are dominated by a single high-mass core whereas others fragment into as many as 20 cores. A minimum-spanning-tree analysis finds fragmentation at scales on the order of the thermal Jeans length or smaller suggesting that turbulent fragmentation is less important than thermal gravitational fragmentation. The diversity of highly fragmented versus singular regions can be explained by varying initial density structures and/or different initial magnetic field strengths. Conclusions: The smallest observed separations between cores are found around the angular resolution limit which indicates that further fragmentation likely takes place on even smaller spatial scales. The CORE project with its numerous spectral line detections will address a diverse set of important physical and chemical questions in the field of high-mass star formation
Taxonomic and functional turnover are decoupled in European peat bogs
In peatland ecosystems, plant communities mediate a globally significant carbon store. The effects of global environmental change on plant assemblages are expected to be a factor in determining how ecosystem functions such as carbon uptake will respond. Using vegetation data from 56 Sphagnum-dominated peat bogs across Europe, we show that in these ecosystems plant species aggregate into two major clusters that are each defined by shared response to environmental conditions. Across environmental gradients, we find significant taxonomic turnover in both clusters. However, functional identity and functional redundancy of the community as a whole remain unchanged. This strongly suggests that in peat bogs, species turnover across environmental gradients is restricted to functionally similar species. Our results demonstrate that plant taxonomic and functional turnover are decoupled, which may allow these peat bogs to maintain ecosystem functioning when subject to future environmental change
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides
Pseudomonads are cosmopolitan microorganisms able to produce a wide array of specialized metabolites. These molecules allow Pseudomonas to scavenge nutrients, sense population density and enhance or inhibit growth of competing microorganisms. However, these valuable metabolites are typically characterized one-molecule–one-microbe at a time, instead of being inventoried in large numbers. To index and map the diversity of molecules detected from these organisms, 260 strains of ecologically diverse origins were subjected to mass-spectrometry-based molecular networking. Molecular networking not only enables dereplication of molecules, but also sheds light on their structural relationships. Moreover, it accelerates the discovery of new molecules. Here, by indexing the Pseudomonas specialized metabolome, we report the molecular-networking-based discovery of four molecules and their evolutionary relationships: a poaeamide analogue and a molecular subfamily of cyclic lipopeptides, bananamides 1, 2 and 3. Analysis of their biosynthetic gene cluster shows that it constitutes a distinct evolutionary branch of the Pseudomonas cyclic lipopeptides. Through analysis of an additional 370 extracts of wheat-associated Pseudomonas, we demonstrate how the detailed knowledge from our reference index can be efficiently propagated to annotate complex metabolomic data from other studies, akin to the way in which newly generated genomic information can be compared to data from public databases
- …
