6 research outputs found
Reproductive environment affects learning performance in a bumble bee
Despite a presumed fitness advantage for individuals with well-developed cognitive abilities, learning performance is usually found to be highly variable within a population. Although little is currently known about the mechanisms responsible for maintaining such variation, there is correlative evidence to suggest that learning performance may be linked to reproductive physiology in the social insects. Bumble bee colonies naturally undergo an initial co-operative phase, when only the queen reproduces, and a subsequent competition phase when all colony members compete to produce male offspring. We experimentally induced these distinct phases by manipulating the presence/absence of the queen and assessed changes in sucrose responsiveness and learning performance. We found that nest-based workers upregulated their reproductive potential in queenless colonies, and correspondingly, these bees were more responsive to sucrose than their queenright counterparts, performing better in an olfactory learning task as a result. These findings suggest that differences in ovarian development are responsible for at least some of the remarkable variation in learning performance that can be observed among very closely related members of social insect colonies
Transforming Fatherhood: Reconstructing Fatherhood Through Faith-Based Father School in South Korea
Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish
The Battle for a Sustainable Food Supply
Since the time that Homo sapiens took up farming, a battle has been waged against pests and diseases which can cause significant losses in crop yield and threaten a sustainable food supply. Initially, early control techniques included religious practices or folk magic, hand removal of weeds and insects, and “chemical” techniques such as smokes, easily available minerals, oils and plant extracts known to have pesticidal activity. But it was not until the early twentieth century that real progress was made when a large number of compounds became available for testing as pesticides due to the upsurge in organic chemistry. The period after the 1940s saw the introduction of important families of chemicals, such as the phenoxy acid herbicides, the organochlorine insecticides and the dithiocarbamate fungicides. The introduction of new pesticides led to significant yield increases, but concern arose over their possible negative effects on human health and the environment. In time, resistance started to occur, making these pesticides less effective. This led agrochemical companies putting in place research looking for new modes of action and giving less toxic and more environmentally friendly products. These research programmes gave rise to new pesticide families, such as the sulfonylurea herbicides, the strobilurin fungicides and the neonicotinoid insecticide classes
