1,529 research outputs found
An adaptive prefix-assignment technique for symmetry reduction
This paper presents a technique for symmetry reduction that adaptively
assigns a prefix of variables in a system of constraints so that the generated
prefix-assignments are pairwise nonisomorphic under the action of the symmetry
group of the system. The technique is based on McKay's canonical extension
framework [J.~Algorithms 26 (1998), no.~2, 306--324]. Among key features of the
technique are (i) adaptability---the prefix sequence can be user-prescribed and
truncated for compatibility with the group of symmetries; (ii)
parallelizability---prefix-assignments can be processed in parallel
independently of each other; (iii) versatility---the method is applicable
whenever the group of symmetries can be concisely represented as the
automorphism group of a vertex-colored graph; and (iv) implementability---the
method can be implemented relying on a canonical labeling map for
vertex-colored graphs as the only nontrivial subroutine. To demonstrate the
practical applicability of our technique, we have prepared an experimental
open-source implementation of the technique and carry out a set of experiments
that demonstrate ability to reduce symmetry on hard instances. Furthermore, we
demonstrate that the implementation effectively parallelizes to compute
clusters with multiple nodes via a message-passing interface.Comment: Updated manuscript submitted for revie
Dynamical tunneling in molecules: Quantum routes to energy flow
Dynamical tunneling, introduced in the molecular context, is more than two
decades old and refers to phenomena that are classically forbidden but allowed
by quantum mechanics. On the other hand the phenomenon of intramolecular
vibrational energy redistribution (IVR) has occupied a central place in the
field of chemical physics for a much longer period of time. Although the two
phenomena seem to be unrelated several studies indicate that dynamical
tunneling, in terms of its mechanism and timescales, can have important
implications for IVR. Examples include the observation of local mode doublets,
clustering of rotational energy levels, and extremely narrow vibrational
features in high resolution molecular spectra. Both the phenomena are strongly
influenced by the nature of the underlying classical phase space. This work
reviews the current state of understanding of dynamical tunneling from the
phase space perspective and the consequences for intramolecular vibrational
energy flow in polyatomic molecules.Comment: 37 pages and 23 figures (low resolution); Int. Rev. Phys. Chem.
(Review to appear in Oct. 2007
Magnetic domain tuning and the emergence of bubble domains in the bilayer manganite La 2−2x Sr 1+2x Mn 2 O 7 (x=0.32)
We report a magnetic force microscopy study of the magnetic domain evolution in the layered manganite La2-2x Sr1+2x Mn2O7 (with x = 0.32). This strongly correlated electron compound is known to exhibit a wide range of magnetic phases, including a recently uncovered biskyrmion phase. We observe a continuous transition from dendritic to stripelike domains, followed by the formation of magnetic bubbles due to a field-and temperaturedependent competition between in-plane and out-of-plane spin alignments. The magnetic bubble phase appears at comparable field and temperature ranges as the biskyrmion phase, suggesting a close relation between both phases. Based on our real-space images we construct a temperature-field phase diagram for this composition.open115Ysciescopu
The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation
Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al
Spinons and triplons in spatially anisotropic frustrated antiferromagnets
The search for elementary excitations with fractional quantum numbers is a
central challenge in modern condensed matter physics. We explore the
possibility in a realistic model for several materials, the spin-1/2 spatially
anisotropic frustrated Heisenberg antiferromagnet in two dimensions. By
restricting the Hilbert space to that expressed by exact eigenstates of the
Heisenberg chain, we derive an effective Schr\"odinger equation valid in the
weak interchain-coupling regime. The dynamical spin correlations from this
approach agree quantitatively with inelastic neutron measurements on the
triangular antiferromagnet Cs_2CuCl_4. The spectral features in such
antiferromagnets can be attributed to two types of excitations: descendents of
one-dimensional spinons of individual chains, and coherently propagating
"triplon" bound states of spinon pairs. We argue that triplons are generic
features of spatially anisotropic frustrated antiferromagnets, and arise
because the bound spinon pair lowers its kinetic energy by propagating between
chains.Comment: 16 pages, 6 figure
Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer
Introduction
Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach.
Methods
Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39).
Results
Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1).
Conclusions
These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response
The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation
Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al
Order by disorder and spiral spin liquid in frustrated diamond lattice antiferromagnets
Frustration refers to competition between different interactions that cannot
be simultaneously satisfied, a familiar feature in many magnetic solids. Strong
frustration results in highly degenerate ground states, and a large suppression
of ordering by fluctuations. Key challenges in frustrated magnetism are
characterizing the fluctuating spin-liquid regime and determining the mechanism
of eventual order at lower temperature. Here, we study a model of a diamond
lattice antiferromagnet appropriate for numerous spinel materials. With
sufficiently strong frustration a massive ground state degeneracy develops
amongst spirals whose propagation wavevectors reside on a continuous
two-dimensional ``spiral surface'' in momentum space. We argue that an
important ordering mechanism is entropic splitting of the degenerate ground
states, an elusive phenomena called order-by-disorder. A broad ``spiral
spin-liquid'' regime emerges at higher temperatures, where the underlying
spiral surface can be directly revealed via spin correlations. We discuss the
agreement between these predictions and the well characterized spinel MnSc2S4
The Universal One-Loop Effective Action
We present the universal one-loop effective action for all operators of
dimension up to six obtained by integrating out massive, non-degenerate
multiplets. Our general expression may be applied to loops of heavy fermions or
bosons, and has been checked against partial results available in the
literature. The broad applicability of this approach simplifies one-loop
matching from an ultraviolet model to a lower-energy effective field theory
(EFT), a procedure which is now reduced to the evaluation of a combination of
matrices in our universal expression, without any loop integrals to evaluate.
We illustrate the relationship of our results to the Standard Model (SM) EFT,
using as an example the supersymmetric stop and sbottom squark Lagrangian and
extracting from our universal expression the Wilson coefficients of
dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version
accepted for publication in JHE
How Mistimed and Unwanted Pregnancies Affect Timing of Antenatal Care Initiation in three Districts in Tanzania
Early antenatal care (ANC) initiation is a doorway to early detection and management of potential complications associated with pregnancy. Although the literature reports various factors associated with ANC initiation such as parity and age, pregnancy intentions is yet to be recognized as a possible predictor of timing of ANC initiation. Data originate from a cross-sectional household survey on health behaviour and service utilization patterns. The survey was conducted in 2011 in Rufiji, Kilombero and Ulanga districts in Tanzania on 910 women of reproductive age who had given birth in the past two years. ANC initiation was considered to be early only if it occurred in the first trimester of pregnancy gestation. A recently completed pregnancy was defined as mistimed if a woman wanted it later, and if she did not want it at all the pregnancy was termed as unwanted. Chisquare was used to test for associations and multinomial logistic regression was conducted to examine how mistimed and unwanted pregnancies affect timing of ANC initiation. Although 49.3% of the women intended to become pregnant, 50.7% (34.9% mistimed and 15.8% unwanted) became pregnant unintentionally. While ANC initiation in the 1st trimester was 18.5%, so was 71.7% and 9.9% in the 2nd and 3rd trimesters respectively. Multivariate analysis revealed that ANC initiation in the 2nd trimester was 1.68 (95% CI 1.10‒2.58) and 2.00 (95% CI 1.05‒3.82) times more likely for mistimed and unwanted pregnancies respectively compared to intended pregnancies. These estimates rose to 2.81 (95% CI 1.41‒5.59) and 4.10 (95% CI 1.68‒10.00) respectively in the 3rd trimester. We controlled for gravidity, age, education, household wealth, marital status, religion, district of residence and travel time to a health facility. Late ANC initiation is a significant maternal and child health consequence of mistimed and unwanted pregnancies in Tanzania. Women should be empowered to delay or avoid pregnancies whenever they need to do so. Appropriate counseling to women, especially those who happen to conceive unintentionally is needed to minimize the possibility of delaying ANC initiation.\u
- …
