2,658 research outputs found

    MERS-CoV at the animal–human interface: inputs on exposure pathways from an expert-opinion elicitation

    Get PDF
    Nearly 4 years after the first report of the emergence of Middle-East respiratory syndrome Coronavirus (MERS-CoV) and nearly 1800 human cases later, the ecology of MERS-CoV, its epidemiology, and more than risk factors of MERS-CoV transmission between camels are poorly understood. Knowledge about the pathways and mechanisms of transmission from animals to humans is limited; as of yet, transmission risks have not been quantified. Moreover the divergent sanitary situations and exposures to animals among populations in the Arabian Peninsula, where human primary cases appear to dominate, vs. other regions in the Middle East and Africa, with no reported human clinical cases and where the virus has been detected only in dromedaries, represents huge scientific and health challenges. Here, we have used expert-opinion elicitation in order to obtain ideas on relative importance of MERS-CoV risk factors and estimates of transmission risks from various types of contact between humans and dromedaries. Fourteen experts with diverse and extensive experience in MERS-CoV relevant fields were enrolled and completed an online questionnaire that examined pathways based on several scenarios, e.g., camels-camels, camels-human, bats/other species to camels/humans, and the role of diverse biological substances (milk, urine, etc.) and potential fomites. Experts believed that dromedary camels play the largest role in MERS-CoV infection of other dromedaries; however, they also indicated a significant influence of the season (i.e. calving or weaning periods) on transmission risk. All experts thought that MERS-CoV-infected dromedaries and asymptomatic humans play the most important role in infection of humans, with bats and other species presenting a possible, but yet undefined, risk. Direct and indirect contact of humans with dromedary camels were identified as the most risky types of contact, when compared to consumption of various camel products, with estimated 'most likely' incidence risks of at least 22 and 13% for direct and indirect contact, respectively. The results of our study are consistent with available, yet very limited, published data regarding the potential pathways of transmission of MERS-CoV at the animal-human interface. These results identify key knowledge gaps and highlight the need for more comprehensive, yet focused research to be conducted to better understand transmission between dromedaries and humans.published_or_final_versio

    Modular Acquisition and Stimulation System for Timestamp-Driven Neuroscience Experiments

    Full text link
    Dedicated systems are fundamental for neuroscience experimental protocols that require timing determinism and synchronous stimuli generation. We developed a data acquisition and stimuli generator system for neuroscience research, optimized for recording timestamps from up to 6 spiking neurons and entirely specified in a high-level Hardware Description Language (HDL). Despite the logic complexity penalty of synthesizing from such a language, it was possible to implement our design in a low-cost small reconfigurable device. Under a modular framework, we explored two different memory arbitration schemes for our system, evaluating both their logic element usage and resilience to input activity bursts. One of them was designed with a decoupled and latency insensitive approach, allowing for easier code reuse, while the other adopted a centralized scheme, constructed specifically for our application. The usage of a high-level HDL allowed straightforward and stepwise code modifications to transform one architecture into the other. The achieved modularity is very useful for rapidly prototyping novel electronic instrumentation systems tailored to scientific research.Comment: Preprint submitted to ARC 2015. Extended: 16 pages, 10 figures. The final publication is available at link.springer.co

    Increased risk of noninfluenza respiratory virus infections associated with receipt of inactivated influenza vaccine

    Get PDF
    We randomized 115 children to trivalent inactivated influenza vaccine (TIV) or placebo. Over the following 9 months, TIV recipients had an increased risk of virologically-confirmed non-influenza infections (relative risk: 4.40; 95 confidence interval: 1.31-14.8). Being protected against influenza, TIV recipients may lack temporary non-specific immunity that protected against other respiratory viruses. © 2012 The Author.postprin

    A single residue substitution in the receptor-binding domain of H5N1 hemagglutinin is critical for packaging into pseudotyped lentiviral particles

    Get PDF
    © 2012 Tang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Serological studies for influenza infection and vaccine response often involve microneutralization and hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including H5N1. We have previously characterized lentiviral particles pseudotyped with H5-HA (H5pp) and validated an H5pp-based assay as a safe alternative for high-throughput serological studies in BSL-2 facilities. Here we show that H5-HAs from different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed. Methodology/Findings: We have carried out mutational analysis to delineate the molecular determinants responsible for efficient packaging of HA from A/Cambodia/40808/2005 (H5Cam) and A/Anhui/1/2005 (H5Anh) into H5pp. Our results demonstrate that a single A134V mutation in the 130-loop of the receptor binding domain is sufficient to render H5Anh the ability to generate H5Anh-pp efficiently, whereas the reverse V134A mutation greatly hampers production of H5Cam-pp. Although protein expression in total cell lysates is similar for H5Anh and H5Cam, cell surface expression of H5Cam is detected at a significantly higher level than that of H5Anh. We further demonstrate by several independent lines of evidence that the behaviour of H5Anh can be explained by a stronger binding to sialic acid receptors implicating residue 134. Conclusions: We have identified a single A134V mutation as the molecular determinant in H5-HA for efficient incorporation into H5pp envelope and delineated the underlying mechanism. The reduced binding to sialic acid receptors as a result of the A134V mutation not only exerts a critical influence in pseudotyping efficiency of H5-HA, but has also an impact at the whole virus level. Because A134V substitution has been reported as a naturally occurring mutation in human host, our results may have implications for the understanding of human host adaptation of avian influenza H5N1 virusesThis work was supported by grants from the Research Fund for the Control of Infectious Diseases of Hong Kong (RFCID#08070972), the Area of Excellence Scheme of the University Grants Committee (grant AoE/M-12/-06 of the Hong Kong Special Administrative Region, China), the French Ministry of Health, and the RESPARI project of the Institut Pasteur International Network

    Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage

    Get PDF
    © 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page

    Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-

    Get PDF
    We report the first observation of the baryonic flavor-changing neutral current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a statistical significance of 5.8 Gaussian standard deviations. This measurement uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV collected by the CDF II detector at the Tevatron collider. The total and differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}. We also report the first measurement of the differential branching ratio of B_s -> phi mu+ mu- using 49 signal events. In addition, we report branching ratios for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore