27 research outputs found
Mitochondrial Dysfunction and Apoptosis in Cumulus Cells of Type I Diabetic Mice
Impaired oocyte quality has been demonstrated in diabetic mice; however, the potential pathways by which maternal diabetes exerts its effects on the oocyte are poorly understood. Cumulus cells are in direct contact with the oocyte via gap junctions and provide essential nutrients to support oocyte development. In this study, we investigated the effects of maternal diabetes on the mitochondrial status in cumulus cells. We found an increased frequency of fragmented mitochondria, a decreased transmembrane potential and an aggregated distribution of mitochondria in cumulus cells from diabetic mice. Furthermore, while mitochondrial biogenesis in cumulus cells was induced by maternal diabetes, their metabolic function was disrupted as evidenced by lower ATP and citrate levels. Moreover, we present evidence suggesting that the mitochondrial impairments induced by maternal diabetes, at least in part, lead to cumulus cell apoptosis through the release of cytochrome c. Together the deleterious effects on cumulus cells may disrupt trophic and signaling interactions with the oocyte, contributing to oocyte incompetence and thus poor pregnancy outcomes in diabetic females
Sex steroid hormones and reproductive disorders: impact on women's health.
The role of sex steroid hormones in reproductive function in women is well established. However, in the last two decades it has been shown that receptors for estrogens, progesterone and androgens are expressed in non reproductive tissue /organs (bone, brain, cardiovascular system) playing a role in their function. Therefore, it is critical to evaluate the impact of sex steroid hormones in the pathophysiology of some diseases (osteoporosis, Alzheimer, atherosclerosis). In particular, women with primary ovarian insufficiency, polycystic ovary syndrome, endometriosis and climacteric syndrome may have more health problems and therefore an hormonal treatment may be crucial for these women
Pre-gestational vs gestational exposure to maternal obesity differentially programs the offspring in mice
On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools
The laboratory rabbit (Oryctolagus cuniculus) is widely used as a model for human diseases, because of its size, which permits non-lethal monitoring of physiological changes and similar disease characteristics. Novel transgenic tools such as, the zinc finger nuclease method and the sleeping beauty transposon mediated or BAC transgenesis were recently adapted to the laboratory rabbit and opened new opportunities in precise tissue and developmental stage specific gene expression/silencing, coupled with increased transgenic efficiencies. Many facets of human development and diseases cannot be investigated in rodents. This is especially true for early prenatal development, its long-lasting effects on health and complex disorders, and some economically important diseases such as atherosclerosis or cardiovascular diseases. The first transgenic rabbits models of arrhythmogenesis mimic human cardiac diseases much better than transgenic mice and hereby underline the importance of non-mouse models. Another emerging field is epigenetic reprogramming and pathogenic mechanisms in diabetic pregnancy, where rabbit models are indispensable. Beyond that rabbit is used for decades as major source of polyclonal antibodies and recently in monoclonal antibody production. Alteration of its genome to increase the efficiency and value of the antibodies by humanization of the immunoglobulin genes, or by increasing the expression of a special receptor (Fc receptor) that augments humoral immune response is a current demand
