3,664 research outputs found
Genetic Comparison of Stemness of Human Umbilical Cord and Dental Pulp
published_or_final_versio
Temperature dependence of the electronic structure of the J(eff)=12 Mott insulator Sr2IrO4 studied by optical spectroscopy
We investigated the temperature-dependent evolution of the electronic structure of the J(eff)=1/2 Mott insulator Sr2IrO4 using optical spectroscopy. The optical conductivity spectra sigma(omega) of this compound has recently been found to exhibit two d-d transitions associated with the transition between the J(eff)=1/2 and J(eff)=3/2 bands due to the cooperation of the electron correlation and spin-orbit coupling. As the temperature increases, the two peaks show significant changes resulting in a decrease in the Mott gap. The experimental observations are compared with the results of first-principles calculation in consideration of increasing bandwidth. We discuss the effect of the temperature change in the electronic structure of Sr2IrO4 in terms of local lattice distortion, excitonic effect, electron-phonon coupling, and magnetic ordering.open69575
Efficient Organic Photovoltaics Utilizing Nanoscale Heterojunctions in Sequentially Deposited Polymer/fullerene Bilayer
A highly efficient sequentially deposited bilayer (SD-bilayer) of polymer/fullerene organic photovoltaic (OPV) device is developed via the solution process. Herein, we resolve two essential problems regarding the construction of an efficient SD-bilayer OPV. First, the solution process fabrication of the SD-bilayer is resolved by incorporating an ordering agent (OA) to the polymer solution, which improves the ordering of the polymer chain and prevents the bottom-layer from dissolving into the top-layer solution. Second, a non-planar heterojunction with a large surface area is formed by the incorporation of a heterojunction agent (HA) to the top-layer solution. Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole- 4,7-diyl-2,5-thiophenediyl] (PCDTBT) is used for the bottom-layer and phenyl-C71-butyric-acid-methyl ester (PC70BM) is used for the top-layer. The SD-bilayer OPV produced utilizing both an OA and HA exhibits a power conversion efficiency (PCE) of 7.12% with a high internal quantum efficiency (IQE). We believe our bilayer system affords a new way of forming OPVs distinct from bulk heterojunction (BHJ) systems and offers a chance to reconsider the polymers that have thus far shown unsatisfactory performance in BHJ systemsope
The sub-energetic GRB 031203 as a cosmic analogue to GRB 980425
Over the six years since the discovery of the gamma-ray burst GRB 980425,
associated with the nearby (distance, ~40 Mpc) supernova 1998bw, astronomers
have fiercely debated the nature of this event. Relative to bursts located at
cosmological distances, (redshift, z~1), GRB 980425 was under-luminous in
gamma-rays by three orders of magnitude. Radio calorimetry showed the explosion
was sub-energetic by a factor of 10. Here, we report observations of the radio
and X-ray afterglow of the recent z=0.105 GRB 031203 and demonstrate that it
too is sub-energetic. Our result, when taken together with the low gamma-ray
luminosity, suggest that GRB 031203 is the first cosmic analogue to GRB 980425.
We find no evidence that this event was a highly collimated explosion viewed
off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically
sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows.
Intensive follow-up of faint bursts with smooth gamma-ray light curves (common
to both GRBs 031203 and 980425) may enable us to reveal their expected large
population.Comment: To Appear in Nature, August 5, 200
Composite Fermion Metals from Dyon Black Holes and S-Duality
We propose that string theory in the background of dyon black holes in
four-dimensional anti-de Sitter spacetime is holographic dual to conformally
invariant composite Dirac fermion metal. By utilizing S-duality map, we show
that thermodynamic and transport properties of the black hole match with those
of composite fermion metal, exhibiting Fermi liquid-like. Built upon
Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on
magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of
SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to
constituent fermions. Being at metallic point, the statistical magnetic flux is
interlocked to the background magnetic field. We find supporting evidences for
proposed holographic duality from study of internal energy of black hole and
probe bulk fermion motion in black hole background. They show good agreement
with ground-state energy of composite fermion metal in Thomas-Fermi
approximation and cyclotron motion of a constituent or composite fermion
excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised
version to be published in JHE
Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2
Recent theories suggest that the excitations of certain quantum Hall states
may have exotic braiding statistics which could be used to build topological
quantum gates. This has prompted an experimental push to study such states
using confined geometries where the statistics can be tested. We study the
transport properties of quantum point contacts (QPCs) fabricated on a
GaAs/AlGaAs two dimensional electron gas that exhibits well-developed
fractional quantum Hall effect, including at bulk filling fraction 5/2. We find
that a plateau at effective QPC filling factor 5/2 is identifiable in point
contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5
microns. We study the temperature and dc-current-bias dependence of the 5/2
plateau in the QPC, as well as neighboring fractional and integer plateaus in
the QPC while keeping the bulk at filling factor 3. Transport near QPC filling
factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states
with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms
in this confined geometry
Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice
Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several
hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA
Synergistic effects of longitudinal amyloid and vascular changes on lobar microbleeds
OBJECTIVE: To determine whether amyloid and hypertensive cerebral small vessel disease (hCSVD) changes synergistically affect the progression of lobar microbleeds in patients with subcortical vascular mild cognitive impairment (svMCI).
METHODS: Among 72 patients with svMCI who underwent brain MRI and [11C] Pittsburgh compound B (PiB)–PET, 52 (72.2%) completed the third year of follow-up. These patients were evaluated by annual neuropsychological testing, brain MRI, and follow-up PiB-PET.
RESULTS: Over 3 years, 31 of 52 patients (59.6%) had incident cerebral microbleeds (CMBs) in the lobar and deep regions. Both baseline and longitudinal changes in lacune numbers were associated with increased numbers of lobar and deep microbleeds, while baseline and longitudinal changes in PiB uptake ratio were associated only with the progression of lobar microbleeds, especially in the temporal, parietal, and occipital areas. Regional white matter hyperintensity severity was also associated with regional lobar CMBs in the parietal and occipital regions. There were interactive effects between baseline and longitudinal lacune number and PiB retention on lobar microbleed progression. Increased lobar, but not deep, CMBs were associated with decreased scores in the digit span backward task and Rey-Osterrieth Complex Figure Test.
CONCLUSIONS: Our findings suggest that amyloid-related pathology and hCSVD have synergistic effects on the progression of lobar microbleeds, providing new clinical insight into the interaction between amyloid burden and hCSVD on CMB progression and cognitive decline with implications for developing effective prevention strategies
Statistical Modeling of Single Target Cell Encapsulation
High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems.Wallace H. Coulter Foundation (Young Investigator in Bioengineering Award)National Institutes of Health (U.S.) (Grant R01AI081534)National Institutes of Health (U.S.) (Grant R21AI087107
Direct Observation of Localized Spin Antiferromagnetic Transition in PdCrO2 by Angle-Resolved Photoemission Spectroscopy
We report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin ordering pattern of Cr3+ ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements, and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system.X1118sciescopu
- …
