79 research outputs found

    Has Motivational Interviewing fallen into its own Premature Focus Trap?

    Get PDF
    Since the initial conception of the behaviour change method Motivational Interviewing, there has been a shift evident in epistemological, methodological and practical applications, from an inductive, process and practitioner-focussed approach to that which is more deductive, research-outcome, and confirmatory-focussed. This paper highlights the conceptual and practical problems of adopting this approach, including the consequences of assessing the what (deductive outcome-focussed) at the expense of the how (inductively process-focussed). We encourage a return to an inductive, practitioner and client-focussed MI approach and propose the use of Computer Assisted Qualitative Data Analysis Systems such as NVivo in research initiatives to support this aim

    Is the process of delivery of an individually tailored lifestyle intervention associated with improvements in LDL cholesterol and multiple lifestyle behaviours in people with Familial Hypercholesterolemia?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More insight in the association between reach, dose and fidelity of intervention components and effects is needed. In the current study, we aimed to evaluate reach, dose and fidelity of an individually tailored lifestyle intervention in people with Familial Hypercholesterolemia (FH) and the association between intervention dose and changes in LDL-Cholesterol (LDL-C), and multiple lifestyle behaviours at 12-months follow-up.</p> <p>Methods</p> <p>Participants (n = 181) randomly allocated to the intervention group received the PRO-FIT intervention consisting of computer-tailored lifestyle advice (<it>PRO-FIT*advice</it>) and counselling (face-to-face and telephone booster calls) using Motivational Interviewing (MI). According to a process evaluation plan, intervention reach, dose delivered and received, and MI fidelity were assessed using the recruitment database, website/counselling logs and the Motivational Interviewing Treatment Integrity (MITI 3.1.1.) code. Regression analyses were conducted to explore differences between participant and non-participant characteristics, and the association between intervention dose and change in LDL-C, and multiple lifestyle behaviours.</p> <p>Results</p> <p>A 34% (n = 181) representative proportion of the intended intervention group was reached during the recruitment phase; participants did not differ from non-participants (n = 623) on age, gender and LDL-C levels. Of the participants, 95% received a <it>PRO-FIT*advice</it> log on account, of which 49% actually logged on and completed at least one advice module. Nearly all participants received a face-to-face counselling session and on average, 4.2 telephone booster calls were delivered. None of the face-to-face sessions were implemented according to MI guidelines. Overall, weak non-significant positive associations were found between intervention dose and LDL-C and lifestyle behaviours.</p> <p>Conclusions</p> <p>Implementation of the PRO-FIT intervention in practice appears feasible, particularly <it>PRO-FIT*advice</it>, since it can be relative easily implemented with a high dose delivered. However, only less than half of the intervention group received the complete intervention-package as intended. Strategies to let participants optimally engage in using web-based computer-tailored interventions like <it>PRO-FIT*advice</it> are needed. Further, more emphasis should be put on more extensive MI training and monitoring/supervision.</p> <p>Trial registration</p> <p>NTR1899 at ww.trialregister.nl.</p

    Clinician acquisition and retention of Motivational Interviewing skills: a two-and-a-half-year exploratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Motivational interviewing (MI) is a collaborative, client-centred counselling style aimed at eliciting and strengthening clients' intrinsic motivation to change. There is strong research evidence supporting the efficacy of MI, notably in its application among alcohol and drug abuse populations. MI interventions in smoking cessation may yield modest but significant increases in quitting. The present study sought to assess the acquisition and retention of MI skills in counsellors at the Swedish National Tobacco Quitline.</p> <p>Methods</p> <p>Three audio-recorded sessions from each of three counsellors were assessed using the Motivational Interviewing Treatment Integrity (MITI) Code Version 3.0 over 11 assessment periods at fixed intervals in a two-and-a-half year period during which counsellors received ongoing supervision.</p> <p>Results</p> <p>The mean skill for all counsellors improved throughout the study period in most MITI variables. However, great variations in MI skill between counsellors were observed, as well as fluctuations in performance in counsellors over time.</p> <p>Conclusion</p> <p>The present exploratory study covers a longer time period than most evaluations of MI training, and has several advantages with regard to study design. It may provide a basis for (larger sample) replication to test MI skill (as measured by the MITI) in relation to behaviour change in clients, to evaluate MI training, and to assess the acquisition and retention of MI skill over time. Difficulties in acquiring and retaining MI skill may raise the issue of a selection policy for MI training. Moreover, fluctuations in MI skill over time emphasise the greater importance of continuous feedback and supervision over initial MI training, and the need for the use of validated treatment integrity assessment instruments in ordinary clinical implementations of MI.</p

    Fundamentals of FGF19 & FGF21 Action In Vitro and In Vivo

    Get PDF
    Fibroblast growth factors 19 (FGF19) and 21 (FGF21) have emerged as key regulators of energy metabolism. Several studies have been conducted to understand the mechanism of FGF19 and FGF21 action, however, the data presented has often been inconsistent and at times contradictory. Here in a single study we compare the mechanisms mediating FGF19/FGF21 actions, and how similarities/differences in actions at the cellular level between these two factors translate to common/divergent physiological outputs. Firstly, we show that in cell culture FGF19/FGF21 are very similar, however, key differences are still observed differentiating the two. In vitro we found that both FGF's activate FGFRs in the context of βKlotho (KLB) expression. Furthermore, both factors alter ERK phosphorylation and glucose uptake with comparable potency. Combination treatment of cells with both factors did not have additive effects and treatment with a competitive inhibitor, the FGF21 delta N17 mutant, also blocked FGF19's effects, suggestive of a shared receptor activation mechanism. The key differences between FGF21/FGF19 were noted at the receptor interaction level, specifically the unique ability of FGF19 to bind/signal directly via FGFR4. To determine if differential effects on energy homeostasis and hepatic mitogenicity exist we treated DIO and ob/ob mice with FGF19/FGF21. We find comparable efficacy of the two proteins to correct body weight and serum glucose in both DIO and ob/ob mice. Nevertheless, FGF21 and FGF19 had distinctly different effects on proliferation in the liver. Interestingly, in vivo blockade of FGF21 signaling in mice using ΔN17 caused profound changes in glycemia indicative of the critical role KLB and FGF21 play in the regulation of glucose homeostasis. Overall, our data demonstrate that while subtle differences exist in vitro the metabolic effects in vivo of FGF19/FGF21 are indistinguishable, supporting a shared mechanism of action for these two hormones in the regulation of energy balance

    Both the C-Terminal Polylysine Region and the Farnesylation of K-RasB Are Important for Its Specific Interaction with Calmodulin

    Get PDF
    Background: Ras protein, as one of intracellular signal switches, plays various roles in several cell activities such as differentiation and proliferation. There is considerable evidence showing that calmodulin (CaM) binds to K-RasB and dissociates K-RasB from membrane and that the inactivation of CaM is able to induce K-RasB activation. However, the mechanism for the interaction of CaM with K-RasB is not well understood. Methodology/Principal Findings: Here, by applying fluorescence spectroscopy and isothermal titration calorimetry, we have obtained thermodynamic parameters for the interaction between these two proteins and identified the important elements of K-RasB for its interaction with Ca 2+ /CaM. One K-RasB molecule interacts with one CaM molecule in a GTP dependent manner with moderate, micromolar affinity at physiological pH and physiologic ionic strength. Mutation in the polybasic domain of K-Ras decreases the binding affinity. By using a chimera in which the C-terminal polylysine region of K-RasB has been replaced with that of H-Ras and vice versa, we find that at physiological pH, H-Ras-(KKKKKK) and Ca 2+ /CaM formed a 1:1 complex with an equilibrium association constant around 10 5 M 21, whereas no binding reaction of K-RasB-(DESGPC) with Ca 2+ /CaM is detected. Furthermore, the interaction of K-RasB with Ca 2+ /CaM is found to be enhanced by the farnesylation of K-RasB. Conclusions/Significance: We demonstrate that the polylysine region of K-RasB not only contributes importantly to th

    Regulation of Brown Fat Adipogenesis by Protein Tyrosine Phosphatase 1B

    Get PDF
    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation.To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO) mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A) and sumoylation-resistant (K/R) PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR) and insulin receptor substrate 1 (IRS1) tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells.These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B

    Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease

    Get PDF
    Fibroblast growth factors (Fgfs) are proteins with diverse functions in development, repair, and metabolism. The human Fgf gene family with 22 members can be classified into three groups, canonical, intracellular, and hormone-like Fgf genes. In contrast to canonical and intracellular Fgfs identified in invertebrates and vertebrates, hormone-like Fgfs, Fgf15/19, Fgf21, and Fgf23, are vertebrate-specific. The ancestral gene of hormone-like Fgfs was generated from the ancestral gene of canonical Fgfs by gene duplication early in vertebrate evolution. Later, Fgf15/19, Fgf21, and Fgf23 were generated from the ancestral gene by genome duplication events. Canonical Fgfs act as autocrine/paracrine factors in an Fgf receptor (Fgfr)-dependent manner. In contrast, hormone-like Fgfs act as endocrine factors in an Fgfr-dependent manner. Canonical Fgfs have a heparin-binding site necessary for the stable binding of Fgfrs and local signaling. In contrast, hormone-like Fgfs acquired endocrine functions by reducing their heparin-binding affinity during their evolution. Fgf15/19 and Fgf23 require βKlotho and αKlotho as cofactors, respectively. However, Fgf21 might physiologically require neither. Hormone-like Fgfs play roles in metabolism at postnatal stages, although they also play roles in development at embryonic stages. Fgf15/19 regulates bile acid metabolism in the liver. Fgf21 regulates lipid metabolism in the white adipose tissue. Fgf23 regulates serum phosphate and active vitamin D levels. Fgf23 signaling disorders caused by hereditary diseases or tumors result in metabolic disorders. In addition, serum Fgf19 or Fgf21 levels are significantly increased by metabolic disorders. Hormone-like Fgfs are newly emerging and quite unique in their evolution and function

    Differential Specificity of Endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in Complex with KLB

    Get PDF
    Background: Recent studies suggest that betaKlotho (KLB) and endocrine FGF19 and FGF21 redirect FGFR signaling to regulation of metabolic homeostasis and suppression of obesity and diabetes. However, the identity of the predominant metabolic tissue in which a major FGFR-KLB resides that critically mediates the differential actions and metabolism effects of FGF19 and FGF21 remain unclear. Methodology/Principal Findings: We determined the receptor and tissue specificity of FGF21 in comparison to FGF19 by using direct, sensitive and quantitative binding kinetics, and downstream signal transduction and expression of early response gene upon administration of FGF19 and FGF21 in mice. We found that FGF21 binds FGFR1 with much higher affinity than FGFR4 in presence of KLB; while FGF19 binds both FGFR1 and FGFR4 in presence of KLB with comparable affinity. The interaction of FGF21 with FGFR4-KLB is very weak even at high concentration and could be negligible at physiological concentration. Both FGF19 and FGF21 but not FGF1 exhibit binding affinity to KLB. The binding of FGF1 is dependent on where FGFRs are present. Both FGF19 and FGF21 are unable to displace the FGF1 binding, and conversely FGF1 cannot displace FGF19 and FGF21 binding. These results indicate that KLB is an indispensable mediator for the binding of FGF19 and FGF21 to FGFRs that is not required for FGF1. Although FGF19 can predominantly activate the responses of the liver and to a less extent the adipose tissue, FGF21 can do so significantly only in the adipose tissue an

    Effect of garlic on cardiovascular disorders: a review

    Get PDF
    Garlic and its preparations have been widely recognized as agents for prevention and treatment of cardiovascular and other metabolic diseases, atherosclerosis, hyperlipidemia, thrombosis, hypertension and diabetes. Effectiveness of garlic in cardiovascular diseases was more encouraging in experimental studies, which prompted several clinical trials. Though many clinical trials showed a positive effect of garlic on almost all cardiovascular conditions mentioned above, however a number of negative studies have recently cast doubt on the efficary of garlic specially its cholesterol lowering effect of garlic. It is a great challenge for scientists all over the world to make a proper use of garlic and enjoy its maximum beneficial effect as it is the cheapest way to prevent cardiovascular disease. This review has attempted to make a bridge the gap between experimental and clinical study and to discuss the possible mechanisms of such therapeutic actions of garlic

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    corecore