6 research outputs found
Bone Mass and the CAG and GGN Androgen Receptor Polymorphisms in Young Men
BACKGROUND: To determine whether androgen receptor (AR) CAG (polyglutamine) and GGN (polyglycine) polymorphisms influence bone mineral density (BMD), osteocalcin and free serum testosterone concentration in young men. METHODOLOGY/PRINCIPAL FINDINGS: Whole body, lumbar spine and femoral bone mineral content (BMC) and BMD, Dual X-ray Absorptiometry (DXA), AR repeat polymorphisms (PCR), osteocalcin and free testosterone (ELISA) were determined in 282 healthy men (28.6+/-7.6 years). Individuals were grouped as CAG short (CAG(S)) if harboring repeat lengths of < or = 21 or CAG long (CAG(L)) if CAG > 21, and GGN was considered short (GGN(S)) or long (GGN(L)) if GGN < or = 23 or > 23. There was an inverse association between logarithm of CAG and GGN length and Ward's Triangle BMC (r = -0.15 and -0.15, P<0.05, age and height adjusted). No associations between CAG or GGN repeat length and regional BMC or BMD were observed after adjusting for age. Whole body and regional BMC and BMD values were similar in men harboring CAG(S), CAG(L), GGN(S) or GGN(L) AR repeat polymorphisms. Men harboring the combination CAG(L)+GGN(L) had 6.3 and 4.4% higher lumbar spine BMC and BMD than men with the haplotype CAG(S)+GGN(S) (both P<0.05). Femoral neck BMD was 4.8% higher in the CAG(S)+GGN(S) compared with the CAG(L)+GGN(S) men (P<0.05). CAG(S), CAG(L), GGN(S), GGN(L) men had similar osteocalcin concentration as well as the four CAG-GGN haplotypes studied. CONCLUSION: AR polymorphisms have an influence on BMC and BMD in healthy adult humans, which cannot be explained through effects in osteoblastic activity
Bone mineral content and density in professional tennis players
Total and regional bone mineral content (BMC) as well as lean and fat mass were measured in nine male professional tennis players (TPs) and 17 nonactive subjects; dual-energy X-ray absorptiometry (DXA) was used for measuring. The mean (+/-SD) age, body mass, and height were 26 +/- 6 and 24 +/- 3 years, 77 +/- 10 and 74 +/- 9 kg, and 180 +/- 6 and 178 +/- 6 cm for the TP and the central group (CG), respectively. The whole body composition for BMC, lean mass, and fat of the TP was similar to that observed in the CG. The tissue composition of the arms and legs was determined from the regional analysis of the whole-body DXA scan. The arm region included the hand, forearm, and arm, and was separated from the trunk by an inclined line crossing the scapulo-humeral joint. In the TP, the arm tissue mass (BMC + fat + lean mass) was about 20% greater in the dominant compared with the contralateral arm because of a greater lean (3772 +/- 500 versus 3148 +/- 380 g, P < 0.001) and BMC (229.0 +/- 43.5 versus 188.2 +/- 31.9 g, P < 0.001). In contrast, no significant differences were observed either in BMC or BMD between arms in the CG. Total mass, lean mass, and BMC were greater in the dominant arm of the TP than in the CG (all P < 0.05). In the TP, BMD was similar in both legs whereas in the CG, BMD was greater in the right leg. Lumbar spine (L2-L4) BMD, adjusted for body mass and height, was 15% greater in the TP than in the CG (P < 0.05). Femoral neck BMDs (femoral neck, Ward's triangle, greater trochanter, and intertrochanteric regions) adjusted for body mass and height were 10-15% greater in the TP (all P < 0.05). Ward's triangle BMD was correlated with the maximal leg extension isometric strength (r = 0.77, P < 0.05) even when adjusted for body mass (r = 0.76, P < 0.05) and height (r = 0.77, P < 0.05). In summary, the participation in tennis is associated with increased BMD in the lumbar spine and femoral neck. These results may have implications for devising exercise strategies in young and middle-aged persons to prevent involutional osteoporosis later in life.4964911,81Q2SCI
Effects of eccentric exercise on cycling efficiency
The aim of this study was to find out whether the efficiency of concentric muscle contraction is impaired by eccentric squatting exercise. The study involved 25 male physical education students in two experiments. In the first experiment 14 subjects undertook cycling exercise at 65% VO(2)max until exhaustion on two occasions. During the experimental condition their cycling was interrupted every 10 min so they could perform eccentric squatting exercise, whereas in the control condition they rested seated on the bike during the interruptions. Eccentric squatting consisted of 10 series of 25 reps with a load equivalent to 150% of the subject's body mass on the shoulders. During the first experiment gross efficiency decreased (mean +/- SE) from 17.1 +/- 0.3 to 16.0 +/- 0.4%, and from 17.2 +/- 0.3 to 16.5 +/- 0.4%, between the 2nd and 9th cycling bouts of the experimental and control conditions, respectively (both p < 0.05). The reduction in cycling efficiency was similar in both conditions (p = 0.10). Blood lactate concentration [La] was higher during the experimental than in the control condition (p < 0.05), but substrate oxidation was similar. MVC was decreased similarly (25-28%) in both conditions. The 11 subjects participating in the second experiment undertook 25 reps of eccentric squatting exercise only, each with a load equivalent to 95% of his maximal voluntary contraction (MVC), repeated every 3 min until exhaustion. One hour after the end of the eccentric squatting exercise series cycling, VO(2) and gross cycling efficiency were comparable to the values observed before the eccentric exercise. Both experimental protocols with eccentric exercise elicited similar muscle soreness 2 days later; however, at this time cycling efficiency was similar to that observed prior to eccentric exercise. The interposition of cycling exercise between the eccentric exercise bouts accelerated the recovery of MVC. We conclude that eccentric exercise does not alter or has only a marginal effect on gross cycling efficiency even in presence of marked muscle soreness.2752591,133Q
