46 research outputs found
Atypical processing of gaze cues and faces explains comorbidity between autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD)
This study investigated the neurobiological basis of comorbidity between autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). We compared children with ASD, ADHD or ADHD+ASD and typically developing controls (CTRL) on behavioural and electrophysiological correlates of gaze cue and face processing. We measured effects of ASD, ADHD and their interaction on the EDAN, an ERP marker of orienting visual attention towards a spatially cued location and the N170, a right-hemisphere lateralised ERP linked to face processing. We identified atypical gaze cue and face processing in children with ASD and ADHD+ASD compared with the ADHD and CTRL groups. The findings indicate a neurobiological basis for the presence of comorbid ASD symptoms in ADHD. Further research using larger samples is needed
Synergistic Actions of Hematopoietic and Mesenchymal Stem/Progenitor Cells in Vascularizing Bioengineered Tissues
Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs) and mesenchymal stem/progenitor cells (MSCs) were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP) scaffolds, followed by infusion of gel-suspended CD34+ hematopoietic cells. Co-transplantation of CD34+ HSCs and CD34− MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromized mice yielded vascularized tissue. The average vascular number of co-transplanted CD34+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34+ cells. Based on additional in vitro results of endothelial differentiation of CD34+ cells by vascular endothelial growth factor (VEGF), we adsorbed VEGF with co-transplanted CD34+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone, adipose, muscle and dermal grafts, and may have implications in the regeneration of internal organs
Tumor associated PD-L1 expression pattern in microscopically tumor positive sentinel lymph nodes in patients with melanoma
Background: Characterization of PD-L1 expression within clinically/radiologically negative but microscopically tumor positive sentinel lymph nodes (SLN) is important to our understanding of the relevance of this immune checkpoint pathway for adjuvant therapy. Methods: Patients included had primary cutaneous melanoma, Breslow thickness of 2.01-4.0 or >4mm with or without tumor ulceration (T3a, T3b, T4a, T4b). All patients had microscopically tumor positive SLN. Hematoxylin and eosin (H&E) staining was performed, followed by PD-L1 immunohistochemical (IHC) staining using a preliminary IHC assay with anti-PD-L1 antibody clone 22C3. The slides were separately evaluated by two pathologists (JY and CG). Samples containing metastatic melanoma lesions were scored separately for PD-L1 expression in intratumoral and peritumoral locations, by utilizing two scoring methods. Results: Twenty-four patients where metastatic melanoma presence in the SLN was confirmed by H&E review of the cut sections were included in the final analysis of PD-L1 expression. SLN tumor size ranged from 1 to 2mm. For three patients, the melanin content was too high to confidently assign a PD-L1 score. For the remaining 21 patients, all had some evidence of either intratumoral or peritumoral PD-L1 expression. The frequency of intratumoral tumor-associated PD-L1 expression was: 0% of tumor cells (3pts, 14%); 10% (7pts, 33%). Conclusions: Tumor-associated PD-L1 expression is readily detectable within melanoma micrometastases in the SLN of the majority of patients. These results support the testing of a therapeutic role for PD1/PD-L1 inhibition in the adjuvant setting, targeting melanoma micrometastases
Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma
BACKGROUND: Multiple myeloma is characterized by the presence of transformed neoplastic plasma cells in the bone marrow and is generally considered to be an incurable disease. Successful treatments will likely require multi-faceted approaches incorporating conventional drug therapies, immunotherapy and other novel treatments. Our lab previously showed that a combination of transient lymphodepletion (sublethal whole body irradiation) and PD-1/PD-L1 blockade generated anti-myeloma T cell reactivity capable of eliminating established disease. We hypothesized that blocking a combination of checkpoint receptors in the context of low-dose, lymphodepleting whole body radiation would boost anti-tumor immunity. METHODS: To test our central hypothesis, we utilized a 5T33 murine multiple myeloma model. Myeloma-bearing mice were treated with a low dose of whole body irradiation and combinations of blocking antibodies to PD-L1, LAG-3, TIM-3, CD48 (the ligand for 2B4) and CTLA4. RESULTS: Temporal phenotypic analysis of bone marrow from myeloma-bearing mice demonstrated that elevated percentages of PD-1, 2B4, LAG-3 and TIM-3 proteins were expressed on T cells. When PD-L1 blockade was combined with blocking antibodies to LAG-3, TIM-3 or CTLA4, synergistic or additive increases in survival were observed (survival rates improved from ~30% to >80%). The increased survival rates correlated with increased frequencies of tumor-reactive CD8 and CD4 T cells. When stimulated in vitro with myeloma cells, CD8 T cells from treated mice produced elevated levels proinflammatory cytokines. Cytokines were spontaneously released from CD4 T cells isolated from mice treated with PD-L1 plus CTLA4 blocking antibodies. CONCLUSIONS: These data indicate that blocking PD-1/PD-L1 interactions in conjunction with other immune checkpoint proteins provides synergistic anti-tumor efficacy following lymphodepletive doses of whole body irradiation. This strategy is a promising combination strategy for myeloma and other hematologic malignancies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40425-014-0043-z) contains supplementary material, which is available to authorized users
