14 research outputs found
'Omic approaches to preventing or managing metastatic breast cancer
Early detection of metastasis-prone breast cancers and characterization of residual metastatic cancers are important in efforts to improve management of breast cancer. Applications of genome-scale molecular analysis technologies are making these complementary approaches possible by revealing molecular features uniquely associated with metastatic disease. Assays that reveal these molecular features will facilitate development of anatomic, histological and blood-based strategies that may enable detection prior to metastatic spread. Knowledge of these features also will guide development of therapeutic strategies that can be applied when metastatic disease burden is low, thereby increasing the probability of a curative response
Structure of outer membrane protein G in lipid bilayers.
β-barrel proteins mediate nutrient uptake in bacteria and serve vital functions in cell signaling and adhesion. For the 14-strand outer membrane protein G of Escherichia coli, opening and closing is pH-dependent. Different roles of the extracellular loops in this process were proposed, and X-ray and solution NMR studies were divergent. Here, we report the structure of outer membrane protein G investigated in bilayers of E. coli lipid extracts by magic-angle-spinning NMR. In total, 1847 inter-residue 1H-1H and 13C-13C distance restraints, 256 torsion angles, but no hydrogen bond restraints are used to calculate the structure. The length of β-strands is found to vary beyond the membrane boundary, with strands 6-8 being the longest and the extracellular loops 3 and 4 well ordered. The site of barrel closure at strands 1 and 14 is more disordered than most remaining strands, with the flexibility decreasing toward loops 3 and 4. Loop 4 presents a well-defined helix
Structure of outer membrane protein G in lipid bilayers.
β-barrel proteins mediate nutrient uptake in bacteria and serve vital functions in cell signaling and adhesion. For the 14-strand outer membrane protein G of Escherichia coli, opening and closing is pH-dependent. Different roles of the extracellular loops in this process were proposed, and X-ray and solution NMR studies were divergent. Here, we report the structure of outer membrane protein G investigated in bilayers of E. coli lipid extracts by magic-angle-spinning NMR. In total, 1847 inter-residue 1H-1H and 13C-13C distance restraints, 256 torsion angles, but no hydrogen bond restraints are used to calculate the structure. The length of β-strands is found to vary beyond the membrane boundary, with strands 6-8 being the longest and the extracellular loops 3 and 4 well ordered. The site of barrel closure at strands 1 and 14 is more disordered than most remaining strands, with the flexibility decreasing toward loops 3 and 4. Loop 4 presents a well-defined helix
Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.
Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR
Impact of genomic testing and patient-reported outcomes on receipt of adjuvant chemotherapy
Practice guidelines incorporate genomic tumor profiling, using results such as the Oncotype DX Recurrence Score (RS), to refine recurrence risk estimates for the large proportion of breast cancer patients with early-stage, estrogen receptor-positive disease. We sought to understand the impact of receiving genomic recurrence risk estimates on breast cancer patients’ well-being and the impact of these patient-reported outcomes on receipt of adjuvant chemotherapy. Participants were 193 women (mean age 57) newly diagnosed with early-stage breast cancer. Women were interviewed before and 2–3 weeks after receiving the RS result between 2011 and 2015. We assessed subsequent receipt of chemotherapy from chart review. After receiving their RS, perceived pros (t = 4.27, P < .001) and cons (t = 8.54, P <.001) of chemotherapy increased from pre-test to post-test, while perceived risk of breast cancer recurrence decreased (t = 2.90, P = .004). Women with high RS tumors were more likely to receive chemotherapy than women with low RS tumors (88 vs. 5 %, OR 0.01, 0.00–0.02, P < .001). Higher distress (OR 2.19, 95 % CI 1.05–4.57, P < .05) and lower perceived cons of chemotherapy (OR 0.50, 95 % CI 0.26–0.97, P < .05) also predicted receipt of chemotherapy. Distressed patients who saw few downsides of chemotherapy received this treatment. Clinicians should consider these factors when discussing chemotherapy with breast cancer patients
Biomarkers in breast cancer: A consensus statement by the Spanish Society of Medical Oncology and the Spanish Society of Pathology
This consensus statement revises and updates the recommendations for biomarkers use in the diagnosis and treatment of breast cancer, and is a joint initiative of the Spanish Society of Medical Oncology and the Spanish Society of Pathology. This expert group recommends determining in all cases of breast cancer the histologic grade and the alpha-estrogen receptor (ER), progesterone receptor, Ki-67 and HER2 status, in order to assist prognosis and establish therapeutic options, including hormone therapy, chemotherapy and anti-HER2 therapy. One of the four available genetic prognostic platforms (MammaPrint®, Oncotype DX®, Prosigna® or EndoPredict®) may be used in node-negative ER-positive patients to establish a prognostic category and decide with the patient whether adjuvant treatment may be limited to hormonal therapy. Newer technologies including next-generation sequencing, liquid biopsy, tumour-infiltrating lymphocytes or PD-1 determination are at this point investigational
