4,049 research outputs found
Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity
and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction
Heating Hot Atmospheres with Active Galactic Nuclei
High resolution X-ray spectroscopy of the hot gas in galaxy clusters has
shown that the gas is not cooling to low temperatures at the predicted rates of
hundreds to thousands of solar masses per year. X-ray images have revealed
giant cavities and shock fronts in the hot gas that provide a direct and
relatively reliable means of measuring the energy injected into hot atmospheres
by active galactic nuclei (AGN). Average radio jet powers are near those
required to offset radiative losses and to suppress cooling in isolated giant
elliptical galaxies, and in larger systems up to the richest galaxy clusters.
This coincidence suggests that heating and cooling are coupled by feedback,
which suppresses star formation and the growth of luminous galaxies. How jet
energy is converted to heat and the degree to which other heating mechanisms
are contributing, eg. thermal conduction, are not well understood. Outburst
energies require substantial late growth of supermassive black holes. Unless
all of the approximately 10E62 erg required to suppress star formation is
deposited in the cooling regions of clusters, AGN outbursts must alter
large-scale properties of the intracluster medium.Comment: 60 pages, 12 figures, to appear in 1997 Annual Reviews of Astronomy
and Astrophysics. This version supersedes the April 2007 version in Reviews
in Advance (references and minor corrections were added), and is similar to
the one scheduled to appear in Volume 45 of ARA
Recommended from our members
Do sound waves transport the AGN energy in the Perseus cluster?
The level of random motions in the intracluster gas lying between 20 and 60 kpc radius in the core of the Perseus cluster has been measured by the Hitomi Soft X-ray Spectrometer (SXS) at 164 ± 10 km s . The maximum energy density in turbulent motions on that scale is therefore low. If dissipated as heat, the turbulent energy will be radiated away in less than 80 Myr and cannot spread across the core. A higher velocity is needed to prevent a cooling collapse. Gravity waves are shown to travel too slowly in a radial direction. Here we investigate propagation of energy by sound waves. The energy travels at ~1000 km s and can cross the core in a cooling time. We show that the displacement velocity amplitude of the gas required to carry the power is consistent with the Hitomi result and that the inferred density and temperature variations are consistent with observations.ACF, CP, CSR and HRR thank the Hitomi collaboration for the opportunity to participate in the analysis of the SXS data. ACF, CP, HRR and SAW acknowledge support from ERC Advanced Grant FEEDBACK, 340442
Association between the c.*229C>T polymorphism of the topoisomerase IIb binding protein 1 (TopBP1) gene and breast cancer
Topoisomerase IIb binding protein 1 (TopBP1)
is involved in cell survival, DNA replication, DNA damage
repair and cell cycle checkpoint control. The biological
function of TopBP1 and its close relation with BRCA1
prompted us to investigate whether alterations in the
TopBP1 gene can influence the risk of breast cancer.
The aim of this study was to examine the association
between five polymorphisms (rs185903567, rs116645643,
rs115160714, rs116195487, and rs112843513) located in
the 30UTR region of the TopBP1 gene and breast cancer
risk as well as allele-specific gene expression. Five hundred
thirty-four breast cancer patients and 556 population controls
were genotyped for these SNPs. Allele-specific Top-
BP1 mRNA and protein expressions were determined by
using real time PCR and western blotting methods,
respectively. Only one SNP (rs115160714) showed an
association with breast cancer. Compared to homozygous
common allele carriers, heterozygous and homozygous for
the T variant had significantly increased risk of breast
cancer (adjusted odds ratio = 3.81, 95 % confidence
interval: 1.63–8.34, p = 0.001). Mean TopBP1 mRNA and
protein expression were higher in the individuals with the
CT or TT genotype. There was a significant association
between the rs115160714 and tumor grade and stage. Most
carriers of minor allele had a high grade (G3) tumors
classified as T2-T4N1M0. Our study raises a possibility
that a genetic variation of TopBP1 may be implicated in
the etiology of breast cancer
A direct image of the obscuring disk surrounding an active galactic nucleus
Active galactic nuclei (AGN) are generally accepted to be powered by the
release of gravitational energy in a compact accretion disk surrounding a
massive black hole. Such disks are also necessary to collimate powerful radio
jets seen in some AGN. The unifying classification schemes for AGN further
propose that differences in their appearance can be attributed to the opacity
of the accreting material, which may obstruct our view of the central region of
some systems. The popular model for the obscuring medium is a parsec-scale disk
of dense molecular gas, although evidence for such disks has been mostly
indirect, as their angular size is much smaller than the resolution of
conventional telescopes. Here we report the first direct images of a pc-scale
disk of ionised gas within the nucleus of NGC 1068, the archetype of obscured
AGN. The disk is viewed nearly edge-on, and individual clouds within the
ionised disk are opaque to high-energy radiation, consistent with the unifying
classification scheme. In projection, the disk and AGN axes align, from which
we infer that the ionised gas disk traces the outer regions of the long-sought
inner accretion disk.Comment: 14 pages, LaTeX, PSfig, to appear in Nature. also available at
http://hethp.mpe-garching.mpg.de/Preprint
Magnetic metamaterial superlens for increased range wireless power transfer.
The ability to wirelessly power electrical devices is becoming of greater urgency as a component of energy conservation and sustainability efforts. Due to health and safety concerns, most wireless power transfer (WPT) schemes utilize very low frequency, quasi-static, magnetic fields; power transfer occurs via magneto-inductive (MI) coupling between conducting loops serving as transmitter and receiver. At the "long range" regime - referring to distances larger than the diameter of the largest loop - WPT efficiency in free space falls off as (1/d)(6); power loss quickly approaches 100% and limits practical implementations of WPT to relatively tight distances between power source and device. A "superlens", however, can concentrate the magnetic near fields of a source. Here, we demonstrate the impact of a magnetic metamaterial (MM) superlens on long-range near-field WPT, quantitatively confirming in simulation and measurement at 13-16 MHz the conditions under which the superlens can enhance power transfer efficiency compared to the lens-less free-space system
Climate change and the global pattern of moraine-dammed glacial lake outburst floods
This is the author accepted manuscript. The final version is available from EGU via the DOI in this recordThe published version, as published in The Cryosphere, is in ORE: http://hdl.handle.net/10871/32433Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste and many have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the collapse of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and their regularity – rather unexpectedly – has declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.SH was funded by a Leverhulme Research Fellowship. SH, RAB and AW acknowledge funding under the HELIX (European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 603864). AW and RAB acknowledge funding from the Joint UK DECC/Defra
Met Office Hadley Centre Climate Programme (GA01101)
HIV Prevention in Care and Treatment Settings: Baseline Risk Behaviors among HIV Patients in Kenya, Namibia, and Tanzania.
HIV care and treatment settings provide an opportunity to reach people living with HIV/AIDS (PLHIV) with prevention messages and services. Population-based surveys in sub-Saharan Africa have identified HIV risk behaviors among PLHIV, yet data are limited regarding HIV risk behaviors of PLHIV in clinical care. This paper describes the baseline sociodemographic, HIV transmission risk behaviors, and clinical data of a study evaluating an HIV prevention intervention package for HIV care and treatment clinics in Africa. The study was a longitudinal group-randomized trial in 9 intervention clinics and 9 comparison clinics in Kenya, Namibia, and Tanzania (N = 3538). Baseline participants were mostly female, married, had less than a primary education, and were relatively recently diagnosed with HIV. Fifty-two percent of participants had a partner of negative or unknown status, 24% were not using condoms consistently, and 11% reported STI symptoms in the last 6 months. There were differences in demographic and HIV transmission risk variables by country, indicating the need to consider local context in designing studies and using caution when generalizing findings across African countries. Baseline data from this study indicate that participants were often engaging in HIV transmission risk behaviors, which supports the need for prevention with PLHIV (PwP). TRIAL REGISTRATION: ClinicalTrials.gov NCT01256463
Does publication bias inflate the apparent efficacy of psychological treatment for major depressive disorder? A systematic review and meta-analysis of US national institutes of health-funded trials
Background The efficacy of antidepressant medication has been shown empirically to be overestimated due to publication bias, but this has only been inferred statistically with regard to psychological treatment for depression. We assessed directly the extent of study publication bias in trials examining the efficacy of psychological treatment for depression. Methods and Findings We identified US National Institutes of Health grants awarded to fund randomized clinical trials comparing psychological treatment to control conditions or other treatments in patients diagnosed with major depressive disorder for the period 1972–2008, and we determined whether those grants led to publications. For studies that were not published, data were requested from investigators and included in the meta-analyses. Thirteen (23.6%) of the 55 funded grants that began trials did not result in publications, and two others never started. Among comparisons to control conditions, adding unpublished studies (Hedges’ g = 0.20; CI95% -0.11~0.51; k = 6) to published studies (g = 0.52; 0.37~0.68; k = 20) reduced the psychotherapy effect size point estimate (g = 0.39; 0.08~0.70) by 25%. Moreover, these findings may overestimate the "true" effect of psychological treatment for depression as outcome reporting bias could not be examined quantitatively. Conclusion The efficacy of psychological interventions for depression has been overestimated in the published literature, just as it has been for pharmacotherapy. Both are efficacious but not to the extent that the published literature would suggest. Funding agencies and journals should archive both original protocols and raw data from treatment trials to allow the detection and correction of outcome reporting bias. Clinicians, guidelines developers, and decision makers should be aware that the published literature overestimates the effects of the predominant treatments for depression
Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases
- …
