194 research outputs found
Honey bee foraging distance depends on month and forage type
To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other
Impact of hiatal hernia on histological pattern of non-erosive reflux disease
BACKGROUND: Hiatus hernia (HH) has major pathophysiological effects favoring gastroesophageal reflux and hence contributing to esophageal mucosa injury, especially in patients with severe gastroesophageal disease. However, prospective studies investigating the impact of HH on the esophageal mucosa in non-erosive reflux disease (NERD) are lacking. This study evaluated the association between the presence of (HH) and the histological findings in symptomatic patients with NERD. METHODS: Fifty consecutive patients with gastroesophageal reflux disease (GERD) were enrolled. After conventional endoscopy, Lugol solution was applied and biopsy specimens were obtained. Histological parameters including basal zone hyperplasia, papillary length and cellular infiltration were evaluated. The chi-square test with Yates' correlation was used for comparing discrete parameters between groups. However, Fisher's exact probability test was used where the expected frequencies were lower than 5. Wilcoxon's test for unpaired samples was preferred in cases of semi-quantitative parameters. RESULTS: The presence of HH along with more severe findings (0.01 <P < 0.05) was confirmed in 18 patients. NERD was observed in 29 (58%) patients. Basal zone hyperplasia and loss of glycogen accompanied HH in all cases, and the correlation was significant in NERD (P < 0.001). The remaining histological patterns were similar between erosive reflux disease and NERD in the presence of HH. CONCLUSION: The presence of HH is correlated with more severe endoscopy findings, and predisposes for severe histological abnormality in cases of NERD
Morphological and functional properties distinguish the substance P and gastrin-releasing peptide subsets of excitatory interneuron in the spinal cord dorsal horn
Excitatory interneurons account for the majority of neurons in the superficial dorsal horn, but despite their presumed contribution to pain and itch, there is still limited information about their organisation and function. We recently identified 2 populations of excitatory interneuron defined by expression of gastrin-releasing peptide (GRP) or substance P (SP). Here, we demonstrate that these cells show major differences in their morphological, electrophysiological, and pharmacological properties. Based on their somatodendritic morphology and firing patterns, we propose that the SP cells correspond to radial cells, which generally show delayed firing. By contrast, most GRP cells show transient or single-spike firing, and many are likely to correspond to the so-called transient central cells. Unlike the SP cells, few of the GRP cells had long propriospinal projections, suggesting that they are involved primarily in local processing. The 2 populations also differed in responses to neuromodulators, with most SP cells, but few GRP cells, responding to noradrenaline and 5-HT; the converse was true for responses to the μ-opioid agonist DAMGO. Although a recent study suggested that GRP cells are innervated by nociceptors and are strongly activated by noxious stimuli, we found that very few GRP cells receive direct synaptic input from TRPV1-expressing afferents, and that they seldom phosphorylate extracellular signal–regulated kinases in response to noxious stimuli. These findings indicate that the SP and GRP cells differentially process somatosensory information
Severe Plasmodium falciparum Malaria Is Associated with Circulating Ultra-Large von Willebrand Multimers and ADAMTS13 Inhibition
Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF) and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20) and cerebral (n = 13) P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF∶Ag) level is associated with disproportionately increased VWF function. VWF collagen binding (VWF∶CB) was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU/ml versus 1.9 IU/ml; p<0.005). This increased VWF∶CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF∶Ag and VWF∶CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (∼55% of normal; p<0.005). Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1). These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor
Impaired Growth and Force Production in Skeletal Muscles of Young Partially Pancreatectomized Rats: A Model of Adolescent Type 1 Diabetic Myopathy?
This present study investigated the temporal effects of type 1 diabetes mellitus (T1DM) on adolescent skeletal muscle growth, morphology and contractile properties using a 90% partial pancreatecomy (Px) model of the disease. Four week-old male Sprague-Dawley rats were randomly assigned to Px (n = 25) or Sham (n = 24) surgery groups and euthanized at 4 or 8 weeks following an in situ assessment of muscle force production. Compared to Shams, Px were hyperglycemic (>15 mM) and displayed attenuated body mass gains by days 2 and 4, respectively (both P<0.05). Absolute maximal force production of the gastrocnemius plantaris soleus complex (GPS) was 30% and 50% lower in Px vs. Shams at 4 and 8 weeks, respectively (P<0.01). GP mass was 35% lower in Px vs Shams at 4 weeks (1.24±0.06 g vs. 1.93±0.03 g, P<0.05) and 45% lower at 8 weeks (1.57±0.12 vs. 2.80±0.06, P<0.05). GP fiber area was 15–20% lower in Px vs. Shams at 4 weeks in all fiber types. At 8 weeks, GP type I and II fiber areas were ∼25% and 40% less, respectively, in Px vs. Shams (group by fiber type interactions, P<0.05). Phosphorylation states of 4E-BP1 and S6K1 following leucine gavage increased 2.0- and 3.5-fold, respectively, in Shams but not in Px. Px rats also had impaired rates of muscle protein synthesis in the basal state and in response to gavage. Taken together, these data indicate that exposure of growing skeletal muscle to uncontrolled T1DM significantly impairs muscle growth and function largely as a result of impaired protein synthesis in type II fibers
In Vivo Human Apolipoprotein E Isoform Fractional Turnover Rates in the CNS
Apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer’s disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4) each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer’s disease (AD). Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ) peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS), we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis
Two Host Factors Regulate Persistence of H7a-Specific T Cells Injected in Tumor-Bearing Mice
BACKGROUND: Injection of CD8 T cells primed against immunodominant minor histocompatibility antigens (MiHA) such as H7(a) can eradicate leukemia and solid tumors. To understand why MiHA-targeted T cells have such a potent antitumor effect it is essential to evaluate their in vivo behavior. In the present work, we therefore addressed two specific questions: what is the proliferative dynamics of H7(a)-specifc T cells in tumors, and do H7(a)-specific T cells persist long-term after adoptive transfer? METHODOLOGY/PRINCIPAL FINDINGS: By day 3 after adoptive transfer, we observed a selective infiltration of melanomas by anti-H7(a) T cells. Over the next five days, anti-H7(a) T cells expanded massively in the tumor but not in the spleen. Thus, by day 8 after injection, anti-H7(a) T cells in the tumor had undergone more cell divisions than those in the spleen. These data strongly suggest that anti-H7(a) T cells proliferate preferentially and extensively in the tumors. We also found that two host factors regulated long-term persistence of anti-H7(a) memory T cells: thymic function and expression of H7(a) by host cells. On day 100, anti-H7(a) memory T cells were abundant in euthymic H7(a)-negative (B10.H7(b)) mice, present in low numbers in thymectomized H7(a)-positive (B10) hosts, and undetectable in euthymic H7(a)-positive recipients. CONCLUSIONS/SIGNIFICANCE: Although in general the tumor environment is not propitious to T-cell invasion and expansion, the present work shows that this limitation may be overcome by adoptive transfer of primed CD8 T cells targeted to an immunodominant MiHA (here H7(a)). At least in some cases, prolonged persistence of adoptively transferred T cells may be valuable for prevention of late cancer relapse in adoptive hosts. Our findings therefore suggest that it may be advantageous to target MiHAs with a restricted tissue distribution in order to promote persistence of memory T cells and thereby minimize the risk of cancer recurrence
Immunomodulation with dendritic cells and donor lymphocyte infusion converge to induce graft vs neuroblastoma reactions without GVHD after allogeneic bone marrow transplantation
Cellular therapies for treating pain associated with spinal cord injury
Spinal cord injury leads to immense disability and loss of quality of life in human with no satisfactory clinical cure. Cell-based or cell-related therapies have emerged as promising therapeutic potentials both in regeneration of spinal cord and mitigation of neuropathic pain due to spinal cord injury. This article reviews the various options and their latest developments with an update on their therapeutic potentials and clinical trialing
External validation of prognostic models to predict stillbirth using the International Prediction of Pregnancy Complications (IPPIC) Network database: an individual participant data meta-analysis
Objective Stillbirth is a potentially preventable complication of pregnancy. Identifying women at high risk of stillbirth can guide decisions on the need for closer surveillance and timing of delivery in order to prevent fetal death. Prognostic models have been developed to predict the risk of stillbirth, but none has yet been validated externally. In this study, we externally validated published prediction models for stillbirth using individual participant data (IPD) meta-analysis to assess their predictive performance. Methods MEDLINE, EMBASE, DH-DATA and AMED databases were searched from inception to December 2020 to identify studies reporting stillbirth prediction models. Studies that developed or updated prediction models for stillbirth for use at any time during pregnancy were included. IPD from cohorts within the International Prediction of Pregnancy Complications (IPPIC) Network were used to validate externally the identified prediction models whose individual variables were available in the IPD. The risk of bias of the models and cohorts was assessed using the Prediction study Risk Of Bias ASsessment Tool (PROBAST). The discriminative performance of the models was evaluated using the C-statistic, and calibration was assessed using calibration plots, calibration slope and calibration-in-the-large. Performance measures were estimated separately in each cohort, as well as summarized across cohorts using random-effects meta-analysis. Clinical utility was assessed using net benefit. Results Seventeen studies reporting the development of 40 prognostic models for stillbirth were identified. None of the models had been previously validated externally, and the full model equation was reported for only one-fifth (20%, 8/40) of the models. External validation was possible for three of these models, using IPD from 19 cohorts (491 201 pregnant women) within the IPPIC Network database. Based on evaluation of the model development studies, all three models had an overall high risk of bias, according to PROBAST. In the IPD meta-analysis, the models had summary C-statistics ranging from 0.53 to 0.65 and summary calibration slopes ranging from 0.40 to 0.88, with risk predictions that were generally too extreme compared with the observed risks. The models had little to no clinical utility, as assessed by net benefit. However, there remained uncertainty in the performance of some models due to small available sample sizes. Conclusions The three validated stillbirth prediction models showed generally poor and uncertain predictive performance in new data, with limited evidence to support their clinical application. The findings suggest methodological shortcomings in their development, including overfitting. Further research is needed to further validate these and other models, identify stronger prognostic factors and develop more robust prediction models. (c) 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.Peer reviewe
- …
