8,134 research outputs found
Multirate Kalman filtering approach for optimal two-dimensional signal reconstruction from noisy subband systems
The International Conference on Image Processing, Santa Barbara, California, 26-29 October 1997Conventional synthesis filters in subband systems lose their optimality when additive noise due, for example, to signal quantization, disturbs the subband components. The multichannel representation of subband signal is combined with the statistical model of input signal to derive the multirate state-space model for filter bank system with additive noises. Thus the signal reconstruction problem in subband system can be formulated as the process of optimal state estimation in the equivalent multirate state-space model. With the input signal embedded in the state vector, the multirate Kalman filtering provides the minimum-variance reconstruction of input signal. Using the powerful Kronecker product notation, the results and derivations can then be extended to the 2-D cases. Incorporated with the vector dynamical model, the 2-D multirate state-space model for 2-D Kalman filtering is developed. Computer simulation with the proposed 2-D multirate Kalman filter gives favorable results.published_or_final_versio
Expression and activities of three inducible enzymes in the healing of gastric ulcers in rats
Aim: To explore the roles of nitric oxide synthase (NOS), heme oxygenase (HO) and cyclooxygenase (COX) in gastric ulceration and to investigate the relationships of the expression and activities of these enzymes at different stages of gastric ulceration. Methods: Gastric ulcers (kissing ulcers) were induced by luminal application of acetic acid. Gastric tissue samples were obtained from the ulcer base, ulcer margin, and non-ulcerated area around the ulcer margin at different time intervals after ulcer induction. The mRNA expression and protein levels of inducible and constitutive isoforms of NOS, HO and COX were analyzed with RT-PCR and Western blotting methods. The activities of the total NOS, inducible NOS (iNOS), HO, and COX were also determined. Results: Differential expression of inducible iNOS, HO-1 and COX-2 and enzyme activities of NOS, HO and COX were found in the gastric ulcer base. High iNOS expression and activity were observed on day 1 to day 3 in severely inflamed ulcer tissues. Maximum expressions of HO-1 and COX-2 and enzyme activities of HO and COX lagged behind that of iNOS, and remained at high levels during the healing phase. Conclusion: The expression and activities of inducible NOS, HO-1 and COX-2 are found to be correlated to different stages of gastric ulceration. Inducible NOS may contribute to ulcer formation while HO-1 and COX-2 may promote ulcer healing.published_or_final_versio
Mechanical properties related to the relaxor-ferroelectric phase transition of titanium-doped lead magnesium niobate
2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS
A momentum resolved resonant inelastic X-ray scattering (qRIXS) experimental station with continuously rotatable spectrometers and parallel detection is designed to operate at different beamlines at synchrotron and free electron laser (FEL) facilities. This endstation, currently located at the Advanced Light Source (ALS), has five emission ports on the experimental chamber for mounting the high-throughput modular soft X-ray spectrometers (MXS) [24]. Coupled to the rotation from the supporting hexapod, the scattered X-rays from 27.5° (forward scattering) to 152.5° (backward scattering) relative to the incident photon beam can be recorded, enabling the momentum-resolved RIXS spectroscopy. The components of this endstation are described in details, and the preliminary RIXS measurements on highly oriented pyrolytic graphite (HOPG) reveal the low energy vibronic excitations from the strong electron-phonon coupling at C K edge around σ* band. The grating upgrade option to enhance the performance at low photon energies is presented and the potential of this spectroscopy is discussed in summary
Association between the c.*229C>T polymorphism of the topoisomerase IIb binding protein 1 (TopBP1) gene and breast cancer
Topoisomerase IIb binding protein 1 (TopBP1)
is involved in cell survival, DNA replication, DNA damage
repair and cell cycle checkpoint control. The biological
function of TopBP1 and its close relation with BRCA1
prompted us to investigate whether alterations in the
TopBP1 gene can influence the risk of breast cancer.
The aim of this study was to examine the association
between five polymorphisms (rs185903567, rs116645643,
rs115160714, rs116195487, and rs112843513) located in
the 30UTR region of the TopBP1 gene and breast cancer
risk as well as allele-specific gene expression. Five hundred
thirty-four breast cancer patients and 556 population controls
were genotyped for these SNPs. Allele-specific Top-
BP1 mRNA and protein expressions were determined by
using real time PCR and western blotting methods,
respectively. Only one SNP (rs115160714) showed an
association with breast cancer. Compared to homozygous
common allele carriers, heterozygous and homozygous for
the T variant had significantly increased risk of breast
cancer (adjusted odds ratio = 3.81, 95 % confidence
interval: 1.63–8.34, p = 0.001). Mean TopBP1 mRNA and
protein expression were higher in the individuals with the
CT or TT genotype. There was a significant association
between the rs115160714 and tumor grade and stage. Most
carriers of minor allele had a high grade (G3) tumors
classified as T2-T4N1M0. Our study raises a possibility
that a genetic variation of TopBP1 may be implicated in
the etiology of breast cancer
The Complete Star Formation History of the Universe
The determination of the star-formation history of the Universe is a key goal
of modern cosmology, as it is crucial to our understanding of how structure in
the Universe forms and evolves. A picture has built up over recent years,
piece-by-piece, by observing young stars in distant galaxies at different times
in the past.
These studies indicated that the stellar birthrate peaked some 8 billion
years ago, and then declined by a factor of around ten to its present value.
Here we report on a new study which obtains the complete star formation history
by analysing the fossil record of the stellar populations of 96545 nearby
galaxies. Broadly, our results support those derived from high-redshift
galaxies elsewhere in the Universe. We find, however, that the peak of star
formation was more recent - around 5 billion years ago. Our study also shows
that the bigger the stellar mass of the galaxy, the earlier the stars were
formed. This striking result indicates a very different formation history for
high- and low-mass formation.Comment: Accepted by Nature. Press embargo until publishe
Jacobi-Predictor-Corrector Approach for the Fractional Ordinary Differential Equations
We present a novel numerical method, called {\tt Jacobi-predictor-corrector
approach}, for the numerical solution of fractional ordinary differential
equations based on the polynomial interpolation and the Gauss-Lobatto
quadrature w.r.t. the Jacobi-weight function
. This method has the computational cost
O(N) and the convergent order , where and are, respectively, the
total computational steps and the number of used interpolating points. The
detailed error analysis is performed, and the extensive numerical experiments
confirm the theoretical results and show the robustness of this method.Comment: 24 pages, 5 figure
Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk
Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al
Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors.
BackgroundIn 31 solid tumor patients treated with the demethylating agent decitabine, we performed tumor biopsies before and after the first cycle of decitabine and used immunohistochemistry (IHC) to assess whether decitabine increased expression of various membrane transporters. Resistance to chemotherapy may arise due to promoter methylation/downregulation of expression of transporters required for drug uptake, and decitabine can reverse resistance in vitro. The endocytosis regulator RhoA, the folate carriers FOLR1 and RFC1, and the glucose transporter GLUT4 were assessed.ResultsPre-decitabine RhoA was higher in patients who had received their last therapy >3 months previously than in patients with more recent prior therapy (P = 0.02), and varied inversely with global DNA methylation as assessed by LINE1 methylation (r = -0.58, P = 0.006). Tumor RhoA scores increased with decitabine (P = 0.03), and RFC1 also increased in patients with pre-decitabine scores ≤150 (P = 0.004). Change in LINE1 methylation with decitabine did not correlate significantly with change in IHC scores for any transporter assessed. We also assessed methylation of the RFC1 gene (alias SLC19A1). SLC19A1 methylation correlated with tumor LINE1 methylation (r = 0.45, P = 0.02). There was a small (statistically insignificant) decrease in SLC19A1 methylation with decitabine, and there was a trend towards change in SLC19A1 methylation with decitabine correlating with change in LINE1 methylation (r = 0.47, P <0.15). While SLC19A1 methylation did not correlate with RFC1 scores, there was a trend towards an inverse correlation between change in SLC19A1 methylation and change in RFC1 expression (r = -0.45, P = 0.19).ConclusionsIn conclusion, after decitabine administration, there was increased expression of some (but not other) transporters that may play a role in chemotherapy uptake. Larger patient numbers will be needed to define the extent to which this increased expression is associated with changes in DNA methylation
Controlling Cherenkov angles with resonance transition radiation
Cherenkov radiation provides a valuable way to identify high energy particles
in a wide momentum range, through the relation between the particle velocity
and the Cherenkov angle. However, since the Cherenkov angle depends only on
material's permittivity, the material unavoidably sets a fundamental limit to
the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring
Imaging Cherenkov detectors must employ materials transparent to the frequency
of interest as well as possessing permittivities close to unity to identify
particles in the multi GeV range, and thus are often limited to large gas
chambers. It would be extremely important albeit challenging to lift this
fundamental limit and control Cherenkov angles as preferred. Here we propose a
new mechanism that uses constructive interference of resonance transition
radiation from photonic crystals to generate both forward and backward
Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible
way with high sensitivity to any desired range of velocities. Photonic crystals
thus overcome the severe material limit for Cherenkov detectors, enabling the
use of transparent materials with arbitrary values of permittivity, and provide
a promising option suited for identification of particles at high energy with
enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary
information with 18 pages and 5 figures, appended at the end of the file with
the manuscript. Source files in Word format converted to PDF. Submitted to
Nature Physic
- …
