1,558 research outputs found
Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos
There are numerous reports of the use of RNA-DNA oligonucleoticles (chimeraplasts) to correct point mutations in vitro and in vivo, including the human apolipoprotein E gene (ApoE). Despite the absence of selection for targeting, high efficiency conversion has been reported. Although mainly used to revert deleterious mutations for gene therapy applications, successful use of this approach would have the potential to greatly facilitate the production of defined mutations in mice and other species. We have attempted to create a point mutation in the mouse ApoE gene by microinjection of chimeraplast into the pronuclei of 1-cell mouse eggs. Following transfer of microinjected eggs we analysed 139 E12.5 embryos, but obtained no evidence for successful conversion. (c) 2005 Wiley-Liss, Inc
Correction of the neuropathogenic human apolipoprotein E4 (APOE4) gene to APOE3 in vitro using synthetic RNA/DNA oligonucleotides (chimeraplasts)
Apolipoprotein E (apoE) is a multifunctional circulating 34-kDa protein, whose gene encodes single-nucleotide polymorphisms linked to several neurodegenerative diseases. Here, we evaluate whether synthetic RNA/DNA oligonucleoticles (chimeraplasts) can convert a dysfunctional gene, APOE4 (C -> T, Cys112Arg), a risk factor for Alzheimer's disease and other neurological disorders, into wild-type APOE3. In preliminary experiments, we treated recombinant Chinese hamster ovary (CHO) cells stably secreting apoE4 and lymphocytes from a patient homozygous for the epsilon 4 allele with a 68-mer apoE4-to-apoE3 chimeraplast, complexed to the cationic delivery reagent, polyethyleneimine. Genotypes were analyzed after 48 h by routine polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and by genomic sequencing. Clear conversions of APOE4 to APOE3 were detected using either technique, although high concentrations of chimeraplast were needed (>= 800 nM). Spiking experiments of PCR reactions or CHO-K1 cells with the chimeraplast confirmed that the repair was not artifactual. However, when treated recombinant CHO cells were passaged for 10 d and then subcloned, no conversion could be detected when > 90 clones were analyzed by locus-specific PCR-RFLP. We conclude that the apparent efficient repair of the APOE4 gene in CHO cells or lymphocytes 48 h post-treatment is unstable, possibly because the high levels of chimeraplast and polyethyleneimine that were needed to induce nucleotide substitution are cytotoxic
Comment on "Wandering minds: The default network and stimulus-independent thought"
Mason et al. (Reports, 19 January 2007, p. 393) attributed activity in certain regions of the "resting" brain to the occurrence of mind-wandering. However, previous research has demonstrated the difficulty of distinguishing this type of stimulus-independent thought from stimulus-oriented thought (e.g., watchfulness). Consideration of both possibilities is required to resolve this ambiguity
Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory
A network of brain regions have been linked with episodic memory retrieval, but limited progress has been made in identifying the contributions of distinct parts of the network. Here, we utilized continuous measures of retrieval to dissociate three components of episodic memory: retrieval success, precision, and vividness. In the fMRI scanner, participants encoded objects that varied continuously on three features: color, orientation, and location. Participants' memory was tested by having them recreate the appearance of the object features using a continuous dial, and continuous vividness judgments were recorded. Retrieval success, precision, and vividness were dissociable both behaviorally and neurally: successful versus unsuccessful retrieval was associated with hippocampal activity, retrieval precision scaled with activity in the angular gyrus, and vividness judgments tracked activity in the precuneus. The ability to dissociate these components of episodic memory reveals the benefit afforded by measuring memory on a continuous scale, allowing functional parcellation of the retrieval network.James S McDonnell Foundation Scholar Award, Medical Research Council, Wellcome Trust, Economic and Social Research Counci
A habituation account of change detection in same/different judgments
We investigated the basis of change detection in a short-term priming task. In two experiments, participants were asked to indicate whether or not a target word was the same as a previously presented cue. Data from an experiment measuring magnetoencephalography failed to find different patterns for “same” and “different” responses, consistent with the claim that both arise from a common neural source, with response magnitude defining the difference between immediate novelty versus familiarity. In a behavioral experiment, we tested and confirmed the predictions of a habituation account of these judgments by comparing conditions in which the target, the cue, or neither was primed by its presentation in the previous trial. As predicted, cue-primed trials had faster response times, and target-primed trials had slower response times relative to the neither-primed baseline. These results were obtained irrespective of response repetition and stimulus–response contingencies. The behavioral and brain activity data support the view that detection of change drives performance in these tasks and that the underlying mechanism is neuronal habituation
Scalar and vector Slepian functions, spherical signal estimation and spectral analysis
It is a well-known fact that mathematical functions that are timelimited (or
spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the
finite precision of measurement and computation unavoidably bandlimits our
observation and modeling scientific data, and we often only have access to, or
are only interested in, a study area that is temporally or spatially bounded.
In the geosciences we may be interested in spectrally modeling a time series
defined only on a certain interval, or we may want to characterize a specific
geographical area observed using an effectively bandlimited measurement device.
It is clear that analyzing and representing scientific data of this kind will
be facilitated if a basis of functions can be found that are "spatiospectrally"
concentrated, i.e. "localized" in both domains at the same time. Here, we give
a theoretical overview of one particular approach to this "concentration"
problem, as originally proposed for time series by Slepian and coworkers, in
the 1960s. We show how this framework leads to practical algorithms and
statistically performant methods for the analysis of signals and their power
spectra in one and two dimensions, and, particularly for applications in the
geosciences, for scalar and vectorial signals defined on the surface of a unit
sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics,
edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be
published by Springer Verlag. This is a slightly modified but expanded
version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the
Handbook, when it was called: Slepian functions and their use in signal
estimation and spectral analysi
Gene expression drives the evolution of dominance.
Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels
Increased risk of A(H1N1)pdm09 influenza infection in UK pig industry workers compared to a general population cohort.
BACKGROUND: Pigs are mixing vessels for influenza viral reassortment but the extent of influenza transmission between swine and humans is not well understood. OBJECTIVES: To assess whether occupational exposure to pigs is a risk factor for human infection with human and swine-adapted influenza viruses. METHODS: UK pig industry workers were frequency-matched on age, region, sampling month, and gender with a community-based comparison group from the Flu Watch study. HI assays quantified antibodies for swine and human A(H1) and A(H3) influenza viruses (titres≥40 considered seropositive and indicative of infection). Virus-specific associations between seropositivity and occupational pig exposure were examined using multivariable regression models adjusted for vaccination. Pigs on the same farms were also tested for seropositivity. RESULTS: 42% of pigs were seropositive to A(H1N1)pdm09. Pig industry workers showed evidence of increased odds of A(H1N1)pdm09 seropositivity compared to the comparison group, albeit with wide confidence intervals (CI), Adjusted Odds Ratio after accounting for possible cross reactivity with other swine A(H1) viruses (aOR) 25.3, 95% CI [1.4-536.3], p=0.028. CONCLUSION: The results indicate that A(H1N1)pdm09 virus was common in UK pigs during the pandemic and subsequent period of human A(H1N1)pdm09 circulation, and occupational exposure to pigs was a risk factor for human infection. Influenza immunization of pig industry workers may reduce transmission and the potential for virus reassortment. This article is protected by copyright. All rights reserved
Slepian functions and their use in signal estimation and spectral analysis
It is a well-known fact that mathematical functions that are timelimited (or
spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the
finite precision of measurement and computation unavoidably bandlimits our
observation and modeling scientific data, and we often only have access to, or
are only interested in, a study area that is temporally or spatially bounded.
In the geosciences we may be interested in spectrally modeling a time series
defined only on a certain interval, or we may want to characterize a specific
geographical area observed using an effectively bandlimited measurement device.
It is clear that analyzing and representing scientific data of this kind will
be facilitated if a basis of functions can be found that are "spatiospectrally"
concentrated, i.e. "localized" in both domains at the same time. Here, we give
a theoretical overview of one particular approach to this "concentration"
problem, as originally proposed for time series by Slepian and coworkers, in
the 1960s. We show how this framework leads to practical algorithms and
statistically performant methods for the analysis of signals and their power
spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden,
Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla
Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells
In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species. © 2013 Povysheva et al
- …
