2,595 research outputs found
Evaluating megaprojects: from the “iron triangle” to network mapping
Evaluation literature has paid relatively little attention to the specific needs of evaluating large, complex industrial and infrastructure projects, often called ‘megaprojects’. The abundant megaproject governance literature, in turn, has largely focused on the so-called ‘megaproject pathologies’, i.e. the chronic budget overruns, and failure of such projects to keep to timetables and deliver the expected social and economic benefits. This article draws on these two strands of literature, identifies shortcomings, and suggests potential pathways towards an improved evaluation of megaprojects. To counterbalance the current overemphasis on relatively narrowly defined accountability as the main function of megaproject evaluation, and the narrow definition of project success in megaproject evaluation, the article argues that conceptualizing megaprojects as dynamic and evolving networks would provide a useful basis for the design of an evaluation approach better able to promote learning and to address the socio economic aspects of megaprojects. A modified version of ‘network mapping’ is suggested as a possible framework for megaproject evaluation, with the exploration of the multiple accountability relationships as a central evaluation task, designed to reconcile learning and accountability as the central evaluation functions. The article highlights the role of evaluation as an ‘emergent’ property of spontaneous megaproject ‘governing’, and explores the challenges that this poses to the role of the evaluator
Fracturing ranked surfaces
Discretized landscapes can be mapped onto ranked surfaces, where every
element (site or bond) has a unique rank associated with its corresponding
relative height. By sequentially allocating these elements according to their
ranks and systematically preventing the occupation of bridges, namely elements
that, if occupied, would provide global connectivity, we disclose that bridges
hide a new tricritical point at an occupation fraction , where
is the percolation threshold of random percolation. For any value of in the
interval , our results show that the set of bridges has a
fractal dimension in two dimensions. In the limit , a self-similar fracture is revealed as a singly connected line
that divides the system in two domains. We then unveil how several seemingly
unrelated physical models tumble into the same universality class and also
present results for higher dimensions
Early star-forming galaxies and the reionization of the Universe
Star forming galaxies represent a valuable tracer of cosmic history. Recent
observational progress with Hubble Space Telescope has led to the discovery and
study of the earliest-known galaxies corresponding to a period when the
Universe was only ~800 million years old. Intense ultraviolet radiation from
these early galaxies probably induced a major event in cosmic history: the
reionization of intergalactic hydrogen. New techniques are being developed to
understand the properties of these most distant galaxies and determine their
influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted
version of the review formatted by the authors, in accordance with Nature
publication policies. For the official, published version of the review,
please see http://www.nature.com/nature/archive/index.htm
Description of the BRIGHTLIGHT cohort: the evaluation of teenage and young adult cancer services in England
Objective International recognition of the unique needs
of young people with cancer is growing. Many countries
have developed specialist age-appropriate cancer services
believing them to be of value. In England, 13 specialist
principal treatment centres (PTCs) deliver cancer care to
young people. Despite this expansion of specialist care,
systematic investigation of associated outcomes and
costs has, to date, been lacking. The aim of this paper is
to describe recruitment and baseline characteristics of the
BRIGHTLIGHT cohort and the development of the bespoke
measures of levels of care and disease severity, which will
inform the evaluation of cancer services in England.
Design Prospective, longitudinal, observational study.
Setting Ninety-seven National Health Service hospitals in
England.
Participants A total of 1114 participants were recruited and
diagnosed between July 2012 and December 2014: 55%
(n=618) were men, mean age was 20.1 years (SD=3.3),
most (86%) were white and most common diagnoses were
lymphoma (31%), germ cell tumour (19%) and leukaemia
(13%).
Results At diagnosis, median quality of life score was
significantly lower than a published control threshold (69.7
points); 40% had borderline to severe anxiety, and 21%
had borderline to severe depression. There was minimal
variation in other patient-reported outcomes according to
age, diagnosis or severity of illness. Survival was lower in
the cohort than for young people diagnosed during the same
period who were not recruited (cumulative survival probability
4 years after diagnosis: 88% vs 92%).
Conclusions Data collection was completed in March 2018.
Longitudinal comparisons will determine outcomes and costs
associated with access/exposure to PTCs. Findings will inform
international intervention and policy initiatives to improve
outcomes for young people with cancer
Atmospheric emissions from the deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate
The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (∼258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (∼33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (∼14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills. Copyright 2011 by the American Geophysical Union
Dusty Planetary Systems
Extensive photometric stellar surveys show that many main sequence stars show
emission at infrared and longer wavelengths that is in excess of the stellar
photosphere; this emission is thought to arise from circumstellar dust. The
presence of dust disks is confirmed by spatially resolved imaging at infrared
to millimeter wavelengths (tracing the dust thermal emission), and at optical
to near infrared wavelengths (tracing the dust scattered light). Because the
expected lifetime of these dust particles is much shorter than the age of the
stars (>10 Myr), it is inferred that this solid material not primordial, i.e.
the remaining from the placental cloud of gas and dust where the star was born,
but instead is replenished by dust-producing planetesimals. These planetesimals
are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our
Solar system that produce the interplanetary dust that gives rise to the
zodiacal light (tracing the inner component of the Solar system debris disk).
The presence of these "debris disks" around stars with a wide range of masses,
luminosities, and metallicities, with and without binary companions, is
evidence that planetesimal formation is a robust process that can take place
under a wide range of conditions. This chapter is divided in two parts. Part I
discusses how the study of the Solar system debris disk and the study of debris
disks around other stars can help us learn about the formation, evolution and
diversity of planetary systems by shedding light on the frequency and timing of
planetesimal formation, the location and physical properties of the
planetesimals, the presence of long-period planets, and the dynamical and
collisional evolution of the system. Part II reviews the physical processes
that affect dust particles in the gas-free environment of a debris disk and
their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary
Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets,
Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201
Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation
Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this.
Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum.
Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum
Sensitivity of Chaos Measures in Detecting Stress in the Focusing Control Mechanism of the Short-Sighted Eye
yesWhen fixating on a stationary object, the power of the eye’s lens fluctuates. Studies have suggested that changes in these so-called microfluctuations in accommodation may be a factor in the onset and progression of short-sightedness. Like many physiological signals, the fluctuations in the power of the lens exhibit chaotic behaviour. A breakdown or reduction in chaos in physiological systems indicates stress to the system or pathology. The purpose of this study was to determine whether the chaos in fluctuations of the power of the lens changes with refractive error, i.e. how short-sighted a subject is, and/or accommodative demand, i.e. the effective distance of the object that is being viewed. Six emmetropes (EMMs, non-short-sighted), six early-onset myopes (EOMs, onset of short-sightedness before the age of 15), and six late-onset myopes (LOMs, onset of short-sightedness after the age of 15) took part in the study. Accommodative microfluctuations were measured at 22 Hz using an SRW-5000 autorefractor at accommodative demands of 1 D (dioptres), 2 D, and 3 D. Chaos theory analysis was used to determine the embedding lag, embedding dimension, limit of predictability, and Lyapunov exponent. Topological transitivity was also tested for. For comparison, the power spectrum and standard deviation were calculated for each time record. The EMMs had a statistically significant higher Lyapunov exponent than the LOMs ( 0.64±0.330.64±0.33 vs. 0.39±0.20 D/s0.39±0.20 D/s ) and a lower embedding dimension than the LOMs ( 3.28±0.463.28±0.46 vs. 3.67±0.493.67±0.49 ). There was insufficient evidence (non-significant p value) of a difference between EOMs and EMMs or EOMs and LOMs. The majority of time records were topologically transitive. There was insufficient evidence of accommodative demand having an effect. Power spectrum analysis and assessment of the standard deviation of the fluctuations failed to discern differences based on refractive error. Chaos differences in accommodation microfluctuations indicate that the control system for LOMs is under stress in comparison to EMMs. Chaos theory analysis is a more sensitive marker of changes in accommodation microfluctuations than traditional analysis methods
- …
