42 research outputs found
Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli)
Macroevolutionary, palaeoecological and biomechanical analyses in deep time offer the possibility to decipher the structural constraints, ecomorphological patterns and evolutionary history of extinct groups. Here, 3D comparative biomechanical analyses of the extinct giant early amphibian group of stereospondyls together with living lissamphibians and crocodiles, shows that: i) stereospondyls had peculiar palaeoecological niches with proper bites and stress patterns very different than those of giant salamanders and crocodiles; ii) their extinction may be correlated with the appearance of neosuchians, which display morphofunctional innovations. Stereospondyls weathered the end-Permian mass extinction, re-radiated, acquired gigantic sizes and dominated (semi) aquatic ecosystems during the Triassic. Because these ecosystems are today occupied by crocodilians, and stereospondyls are extinct amphibians, their palaeobiology is a matter of an intensive debate: stereospondyls were a priori compared with putative living analogous such as giant salamanders and/or crocodilians and our new results try to close this debate.Peer ReviewedPostprint (published version
A Nomenclature for Vertebral Fossae in Sauropods and Other Saurischian Dinosaurs
The axial skeleton of extinct saurischian dinosaurs (i.e., theropods, sauropodomorphs), like living birds, was pneumatized by epithelial outpocketings of the respiratory system. Pneumatic signatures in the vertebral column of fossil saurischians include complex branching chambers within the bone (internal pneumaticity) and large chambers visible externally that are bounded by neural arch laminae (external pneumaticity). Although general aspects of internal pneumaticity are synapomorphic for saurischian subgroups, the individual internal pneumatic spaces cannot be homologized across species or even along the vertebral column, due to their variability and absence of topographical landmarks. External pneumatic structures, in contrast, are defined by ready topological landmarks (vertebral laminae), but no consistent nomenclatural system exists. This deficiency has fostered confusion and limited their use as character data in phylogenetic analysis.We present a simple system for naming external neural arch fossae that parallels the one developed for the vertebral laminae that bound them. The nomenclatural system identifies fossae by pointing to reference landmarks (e.g., neural spine, centrum, costal articulations, zygapophyses). We standardize the naming process by creating tripartite names from “primary landmarks,” which form the zygodiapophyseal table, “secondary landmarks,” which orient with respect to that table, and “tertiary landmarks,” which further delineate a given fossa.The proposed nomenclatural system for lamina-bounded fossae adds clarity to descriptions of complex vertebrae and allows these structures to be sourced as character data for phylogenetic analyses. These anatomical terms denote potentially homologous pneumatic structures within Saurischia, but they could be applied to any vertebrate with vertebral laminae that enclose spaces, regardless of their developmental origin or phylogenetic distribution
Taxonomic and Life History Bias in Herbicide Resistant Weeds: Implications for Deployment of Resistant Crops
Evolved herbicide resistance (EHR) is an important agronomic problem and consequently a food security problem, as it jeopardizes herbicide effectiveness and increases the difficulty and cost of weed management. EHR in weeds was first reported in 1970 and the number of cases has accelerated dramatically over the last two decades. Despite 40 years of research on EHR, why some weeds evolve resistance and others do not is poorly understood. Here we ask whether weed species that have EHR are different from weeds in general. Comparing taxonomic and life history traits of weeds with EHR to a control group (“the world's worst weeds”), we found weeds with EHR significantly over-represented in certain plant families and having certain life history biases. In particular, resistance is overrepresented in Amaranthaceae, Brassicaceae and Poaceae relative to all weeds, and annuality is ca. 1.5 times as frequent in weeds with EHR as in the control group. Also, for perennial EHR weeds, vegetative reproduction is only 60% as frequent as in the control group. We found the same trends for subsets of weeds with EHR to acetolactate synthase (ALS), photosystem II (PSII), and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase-inhibitor herbicides and with multiple resistance. As herbicide resistant crops (transgenic or not) are increasingly deployed in developing countries, the problems of EHR could increase in those countries as it has in the USA if the selecting herbicides are heavily applied and appropriate management strategies are not employed. Given our analysis, we make some predictions about additional species that might evolve resistance
