1,786 research outputs found

    Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation II: RT-2/CZT payload

    Full text link
    Cadmium Zinc Telluride (CZT) detectors are high sensitivity and high resolution devices for hard X-ray imaging and spectroscopic studies. The new series of CZT detector modules (OMS40G256) manufactured by Orbotech Medical Solutions (OMS), Israel, are used in the RT-2/CZT payload onboard the CORONAS-PHOTON satellite. The CZT detectors, sensitive in the energy range of 20 keV to 150 keV, are used to image solar flares in hard X-rays. Since these modules are essentially manufactured for commercial applications, we have carried out a series of comprehensive tests on these modules so that they can be confidently used in space-borne systems. These tests lead us to select the best three pieces of the 'Gold' modules for the RT-2/CZT payload. This paper presents the characterization of CZT modules and the criteria followed for selecting the ones for the RT-2/CZT payload. The RT-2/CZT payload carries, along with three CZT modules, a high spatial resolution CMOS detector for high resolution imaging of transient X-ray events. Therefore, we discuss the characterization of the CMOS detector as well.Comment: 26 pages, 19 figures, Accepted for publication in Experimental Astronomy (in press

    Correlations between QPO frequencies and spectral parameters of GRS 1915+105 using AstroSat observations

    Full text link
    In this work, we study the correlation between Quasi-periodic Oscillation (QPO) frequency and the spectral parameters during various X-ray states in the black hole binary GRS 1915+105 which matches well with the predicted relativistic dynamic frequency (i.e. the inverse of the sound crossing time) at the truncated radii. We have used broadband data of LAXPC and SXT instruments onboard AstroSat. Spectral fitting shows that the accretion rate varies from 0.1\sim 0.1 to 5.0×1018\sim 5.0 \times 10^{18} gm/s and the truncated radius changing from the last stable orbit of an almost maximally spinning black hole, \sim 1.2 to \sim 19 Gravitational radii. For this wide range, the frequencies of the C-type QPO (2 - 6 Hz) follow the trend predicted by the relativistic dynamical frequency model and interestingly, the high-frequency QPO at \sim 70 Hz also follows the same trend, suggesting they originate from the innermost stable circular orbit with the same mechanism as the more commonly observed C-type QPO. While the qualitative trend is as predicted, there are quantitative deviations between the data and the theory, and the possible reasons for these deviations are discussed

    Highly accurate local basis sets for large-scale DFT calculations in conquest

    Get PDF
    Given the widespread use of density functional theory (DFT), there is an increasing need for the ability to model large systems (beyond 1000 atoms). We present a brief overview of the large-scale DFT code conquest, which is capable of modelling such large systems, and discuss approaches to the generation of consistent, well-converged pseudo-atomic basis sets which will allow such large-scale calculations. We present tests of these basis sets for a variety of materials, comparing to fully converged plane wave results using the same pseudopotentials and grids

    Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    Get PDF
    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark

    Reduced cortical thickness in patients with acute-on-chronic liver failure due to non-alcoholic etiology

    Get PDF
    Background: Acute-on-chronic liver failure (ACLF) is a form of liver disease with high short-term mortality. ACLF offers considerable potential to affect the cortical areas by significant tissue injury due to loss of neurons and other supporting cells. We measured changes in cortical thickness and metabolites profile in ACLF patients following treatment, and compared it with those of age matched healthy volunteers. Methods: For the cortical thickness analysis we performed whole brain high resolution T1-weighted magnetic resonance imaging (MRI) on 15 ACLF and 10 healthy volunteers at 3T clinical MR scanner. Proton MR Spectroscopy (1H MRS) was also performed to measure level of altered metabolites. Out of 15 ACLF patients 10 survived and underwent follow-up study after clinical recovery at 3 weeks. FreeSurfer program was used to quantify cortical thickness and LC- Model software was used to quantify absolute metabolites concentrations. Neuropsychological (NP) test was performed to assess the cognitive performance in follow-up ACLF patients compared to controls. Results: Significantly reduced cortical thicknesses in multiple brain sites, and significantly decreased N-acetyl aspartate (NAA), myo-inositol (mI) and significantly increased glutamate/glutamine (glx) metabolites were observed in ACLF compared to those of controls at baseline study. Follow-up patients showed significant recovery in cortical thickness and Glx level, while NAA and mI were partially recovered compared to baseline study. When compared to controls, follow-up patients still showed reduced cortical thickness and altered metabolites level. Follow-up patients had abnormal neuropsychological (NP) scores compared to controls. Conclusions: Neuronal loss as suggested by the reduced NAA, decreased cellular density due to increased cerebral hyperammonemia as supported by the increased glx level, and increased proinflammatory cytokines and free radicals may account for the reduced cortical thickness in ACLF patients. Presence of reduced cortical thickness, altered metabolites and abnormal NP test scores in post recovery subjects as compared to those of controls is associated with incomplete clinical recovery. The current imaging protocol can be easily implemented in clinical settings to evaluate and monitor brain tissue changes in patients with ACLF during the course of treatment

    Production of the first transgenic cassava in Africa via direct shoot organogenesis from friable embryogenic calli and germination of maturing somatic embryos

    Get PDF
    The impact of cassava transformation technologies for agricultural development in Africa will depend largely on how successfully these capabilities are transferred and adapted to the African environmentand local needs. Here we report on the first successful establishment of cassava regeneration and transformation capacity in Africa via organogenesis, somatic embryogenesis and friable embryogeniccallus (FEC). As a prerequisite for genetic engineering, we evaluated six African cassava genotypes for the ability of a) induction of FEC b) hygromycin sensitivity and c) T-DNA integration potential bydifferent Agrobacterium strains. FEC was induced in genotypes TMS 60444, TME 1 and TMS 91/02327. Potential tissues for FEC formation were induced in TMS 91/02324, TME 12 and TME 13. Pure andproliferating FEC was obtained and maintained only in TMS 60444. FEC growth and shoot organogenesis were completely suppressed when hygromycin was used at a concentration of 20 mg/l in all tissue types and genotypes. With somatic cotyledons, statistically significant differences (p0.05) were observed between Agrobacterium strains and genotypes with respect to T-DNA transfer efficiency.Using somatic cotyledons, TME 8 was found to be the most amenable to transformation with maximum blue spots per GUS-positive explants, and Agrobacterium GV3101 proved to be superior to EHA105,LBA4404, and AGl-1 for T-DNA transfer based on transient assays with a reporter gene (GUS). With FEC, Agrobacterium LBA4404 was superior to other strains. This study also identified EHA105 as a newvir helper strain to recover transgenic cassava plants. PCR and Southern hybridization of genomic DNA of the hygromycin-resistant cassava plants to a hpt probe confirmed the integration of hpt withintegration events varying between 1 and 2 insertions. The benefit of combining the FEC and shoot organogenesis systems for recovering transgenic cassava plants is described. The contributions ofthis report to enhancing the development and deployment of genetic engineering of cassava for agricultural biotechnology development in Africa are discussed

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Gut Microbiota, Probiotics and Diabetes

    Get PDF
    Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes

    Comparative cytogenetics of three species of Dichotomius (Coleoptera, Scarabaeidae)

    Get PDF
    Meiotic and mitotic chromosomes of Dichotomius nisus, D. semisquamosus and D. sericeus were analyzed after conventional staining, C-banding and silver nitrate staining. In addition, Dichotomius nisus and D. semisquamosus chromosomes were also analyzed after fluorescent in situ hybridization (FISH) with an rDNA probe. The species analyzed had an asymmetrical karyotype with 2n = 18 and meta-submetacentric chromosomes. The sex determination mechanism was of the Xyp type in D. nisus and D. semisquamosus and of the Xy r type in D. sericeus. C-banding revealed the presence of pericentromeric blocks of constitutive heterochromatin (CH) in all the chromosomes of the three species. After silver staining, the nucleolar organizer regions (NORs) were located in autosomes of D. semisquamosus and D. sericeus and in the sexual bivalent of D. nisus. FISH with an rDNA probe confirmed NORs location in D. semisquamosus and in D. nisus. Our results suggest that chromosome inversions and fusions occurred during the evolution of the group

    Meniscal ossicle

    Get PDF
    Meniscal ossicle, or bone within the substance of meniscus, is a rare entity and commonly confused with a loose body both clinically and radiologically. MRI is the modality that can definitely diagnose meniscal ossicle and avoid unnecessary diagnostic arthroscopy. Here we report one such case diagnosed using MRI; this patient is doing well without surgery one year after diagnosis
    corecore