64 research outputs found
HACCP-based quality risk management approach to udder health problems on dairy farms
Against the background of prevailing udder health problems on dairy farms, this paper discusses a new approach to mastitis control. Current udder health control programmes, such as the 'five-point plan', are highlighted and their drawbacks indicated. The concept and principles of hazard analysis critical control points (HACCP) are introduced. The eight core elements of this concept are dealt with by using the example of a dairy herd with a mastitis problem due to Staphylococcus aureus. The various steps to be taken in the development of a HACCP-based quality risk management programme are illustrated through the application of core elements. Finally, it is shown that the HACCP key words, structure, organisation, planning, communication and formalisation; which do not frequently appear in conventional herd health and production management programmes can contribute to better udder health. The role of the veterinarian can be paramount and of added value, if he/she is willing to invest in new knowledge and skills, such as the HACCP concept, farm economics, animal nutrition, and particularly the role of coach to the dairy farmer in the implementation of preventative measures in relation to udder health
Association between genotypic diversity and biofilm production in group B Streptococcus
Genome-wide diversity and phylogeography of Mycobacterium avium subsp. paratuberculosis in Canadian dairy cattle
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative bacterium of Johne’s disease (JD) in ruminants. The control of JD in the dairy industry is challenging, but can be improved with a better understanding of the diversity and distribution of MAP subtypes. Previously established molecular typing techniques used to differentiate MAP have not been sufficiently discriminatory and/or reliable to accurately assess the population structure. In this study, the genetic diversity of 182 MAP isolates representing all Canadian provinces was compared to the known global diversity, using single nucleotide polymorphisms identified through whole genome sequencing. MAP isolates from Canada represented a subset of the known global diversity, as there were global isolates intermingled with Canadian isolates, as well as multiple global subtypes that were not found in Canada. One Type III and six “Bison type” isolates were found in Canada as well as one Type II subtype that represented 86% of all Canadian isolates. Rarefaction estimated larger subtype richness in Québec than in other Canadian provinces using a strict definition of MAP subtypes and lower subtype richness in the Atlantic region using a relaxed definition. Significant phylogeographic clustering was observed at the inter-provincial but not at the intra-provincial level, although most major clades were found in all provinces. The large number of shared subtypes among provinces suggests that cattle movement is a major driver of MAP transmission at the herd level, which is further supported by the lack of spatial clustering on an intra-provincial scale
Competitive Performance of Transgenic Wheat Resistant to Powdery Mildew
Genetically modified (GM) plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis) or chitinase and glucanase genes from barley (resistance against fungi in general) were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes) or the actin promoter from rice (glucanase gene). Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree of expression of the transgenes
Species Tree Estimation for the Late Blight Pathogen, Phytophthora infestans, and Close Relatives
To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based “supergene” approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred
Investigations on the efficacy of routinely used phenotypic methods compared to genotypic approaches for the identification of staphylococcal species isolated from companion animals in Irish veterinary hospitals
BACKGROUND: Identification of Staphylococci to species level in veterinary microbiology is important to inform therapeutic intervention and management. We report on the efficacy of three routinely used commercial phenotypic methods for staphylococcal species identification, namely API Staph 32 (bioMérieux), RapID (Remel) and Staph-Zym (Rosco Diagnostica) compared to genotyping as a reference method to identify 52 staphylococcal clinical isolates (23 coagulase positive; 29 coagulase negative) from companion animals in Irish veterinary hospitals. RESULTS: Genotyping of a 412 bp fragment of the staphylococcal tuf gene and coagulase testing were carried out on all 52 veterinary samples along with 7 reference strains. In addition, genotyping of the staphylococcal rpoB gene, as well as PCR-RFLP of the pta gene, were performed to definitively identify members of the Staphylococcus intermedius group (SIG). The API Staph 32 correctly identified all S. aureus isolates (11/11), 83% (10/12) of the SIG species, and 66% (19/29) of the coagulase negative species. RapID and Staph-Zym correctly identified 61% (14/23) and 0% (0/23) respectively of the coagulase-positives, and 10% (3/29) and 3% (1/29) respectively of the coagulase-negative species. CONCLUSIONS: Commercially available phenotypic species identification tests are inadequate for the correct identification of both coagulase negative and coagulase positive staphylococcal species from companion animals. Genotyping using the tuf gene sequence is superior to phenotyping for identification of staphylococcal species of animal origin. However, use of PCR-RFLP of pta gene or rpoB sequencing is recommended as a confirmatory method for discriminating between SIG isolates
Changing trends in mastitis
<p>Abstract</p> <p>The global dairy industry, the predominant pathogens causing mastitis, our understanding of mastitis pathogens and the host response to intramammary infection are changing rapidly. This paper aims to discuss changes in each of these aspects. Globalisation, energy demands, human population growth and climate change all affect the dairy industry. In many western countries, control programs for contagious mastitis have been in place for decades, resulting in a decrease in occurrence of <it>Streptococcus agalactiae </it>and <it>Staphylococcus aureus </it>mastitis and an increase in the relative impact of <it>Streptococcus uberis </it>and <it>Escherichia coli </it>mastitis. In some countries, <it>Klebsiella </it>spp. or <it>Streptococcus dysgalactiae </it>are appearing as important causes of mastitis. Differences between countries in legislation, veterinary and laboratory services and farmers' management practices affect the distribution and impact of mastitis pathogens. For pathogens that have traditionally been categorised as contagious, strain adaptation to human and bovine hosts has been recognised. For pathogens that are often categorised as environmental, strains causing transient and chronic infections are distinguished. The genetic basis underlying host adaptation and mechanisms of infection is being unravelled. Genomic information on pathogens and their hosts and improved knowledge of the host's innate and acquired immune responses to intramammary infections provide opportunities to expand our understanding of bovine mastitis. These developments will undoubtedly contribute to novel approaches to mastitis diagnostics and control.</p
The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress
Incidence and Characterisation of Methicillin-Resistant Staphylococcus aureus (MRSA) from Nasal Colonisation in Participants Attending a Cattle Veterinary Conference in the UK
We sought to determine the prevalence of nasal colonisation with methicillin-resistant Staphylococcus aureus among cattle veterinarians in the UK. There was particular interest in examining the frequency of colonisation with MRSA harbouring mecC, as strains with this mecA homologue were originally identified in bovine milk and may represent a zoonotic risk to those in contact with dairy livestock. Three hundred and seven delegates at the British Cattle Veterinarian Association (BCVA) Congress 2011 in Southport, UK were screening for nasal colonisation with MRSA. Isolates were characterised by whole genome sequencing and antimicrobial susceptibility testing. Eight out of three hundred and seven delegates (2.6%) were positive for nasal colonisation with MRSA. All strains were positive for mecA and none possessed mecC. The time since a delegate’s last visit to a farm was significantly shorter in the MRSA-positive group than in MRSA-negative counterparts. BCVA delegates have an increased risk of MRSA colonisation compared to the general population but their frequency of colonisation is lower than that reported from other types of veterinarian conference, and from that seen in human healthcare workers. The results indicate that recent visitation to a farm is a risk factor for MRSA colonisation and that mecC-MRSA are rare among BCVA delegates (<1% based on sample size). Contact with livestock, including dairy cattle, may still be a risk factor for human colonisation with mecC-MRSA but occurs at a rate below the lower limit of detection available in this study
Molecular correlates of host specialization in Staphylococcus aureus
The majority of Staphylococcus aureus isolates that are recovered from either serious infections in humans or from mastitis in cattle represent genetically distinct sets of clonal groups. Moreover, population genetic analyses have provided strong evidence of host specialization among S. aureus clonal groups associated with human and ruminant infection. However, the molecular basis of host specialization in S. aureus is not understood.We sequenced the genome of strain ET3-1, a representative isolate of a common bovine mastitis-causing S. aureus clone. Strain ET3-1 encodes several genomic elements that have not been previously identified in S. aureus, including homologs of virulence factors from other gram-positive pathogens. Relative to the other sequenced S. aureus associated with human infection, allelic variation in ET3-1 was high among virulence and surface-associated genes involved in host colonization, toxin production, iron metabolism, antibiotic resistance, and gene regulation. Interestingly, a number of well-characterized S. aureus virulence factors, including protein A and clumping factor A, exist as pseudogenes in ET3-1. Whole-genome DNA microarray hybridization revealed considerable similarity in the gene content of highly successful S. aureus clones associated with bovine mastitis, but not among those clones that are only infrequently recovered from bovine hosts.Whole genome sequencing and comparative genomic analyses revealed a set of molecular genetic features that distinguish clones of highly successful bovine-associated S. aureus optimized for mastitis pathogenesis in cattle from those that infect human hosts or are only infrequently recovered from bovine sources. Further, the results suggest that modern bovine specialist clones diverged from a common ancestor resembling human-associated S. aureus clones through a combination of foreign DNA acquisition and gene decay
- …
