20 research outputs found
GSK-3β is essential for physiological electric field-directed Golgi polarization and optimal electrotaxis
Endogenous electrical fields (EFs) at corneal and skin wounds send a powerful signal that directs cell migration during wound healing. This signal therefore may serve as a fundamental regulator directing cell polarization and migration. Very little is known of the intracellular and molecular mechanisms that mediate EF-induced cell polarization and migration. Here, we report that Chinese hamster ovary (CHO) cells show robust directional polarization and migration in a physiological EF (0.3–1 V/cm) in both dissociated cell culture and monolayer culture. An EF of 0.6 V/cm completely abolished cell migration into wounds in monolayer culture. An EF of higher strength (≥1 V/cm) is an overriding guidance cue for cell migration. Application of EF induced quick phosphorylation of glycogen synthase kinase 3β (GSK-3β) which reached a peak as early as 3 min in an EF. Inhibition of protein kinase C (PKC) significantly reduced EF-induced directedness of cell migration initially (in 1–2 h). Inhibition of GSK-3β completely abolished EF-induced GA polarization and significantly inhibited the directional cell migration, but at a later time (2–3 h in an EF). Those results suggest that GSK-3β is essential for physiological EF-induced Golgi apparatus (GA) polarization and optimal electrotactic cell migration
Mid-Crustal Focused Fluid Movement: Thermal Consequences and Silica Transport
Numerical models have been constructed to assess the thermal consequences and silica transport that would result if water released by regional metamorphic dehydration or cooling plutons were focused into large-scale (10 km) fracture zones. Two fracture zone model geometries have been considered, in one the fracture zone is planar, and in the other the fracture zone is radially symmetric. In both models dispersion and collection of fluids is simulated. The model results indicate that for planar or radially symmetric fracture zones, hydrothermal flow rates must approach 0.1 g/s (per m crack length) or 1 kg/s, respectively, to produce significant thermal effects. Given that regional metamorphic fluid fluxes are probably < 10−9 kg/m2−s, generation of a thermal ano-maly by fluids released during metamorphic dehydration into a planar fracture zone requires an unrealistic degree of lateral flow (>50 km). The collection area required to produce a detectable heating effect about a radially symmetric fracture zone is smaller (a radius of ∼ ∼ 15 km), but also implausibly large. These scales suggest tha
Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat
The role of metamorphic fluid transport in the Rb-Sr isotopic resetting of shear zones: evidence from Nordre Str�mfjord, West Greenland
Ion probe and fluid inclusion evidence for co-seismic fluid infiltration in a crustal detachment
Manganoan garnet rocks associated with the Broken Hill Pb-Zn-Ag Orebody, Australia
The original publication is available at www.springerlink.comThe Palaeoproterozoic Broken Hill Pb–Zn–Ag stratiform orebody is intimately associated with manganoan garnet-bearing rocks. On stratigraphic and chemical grounds it is argued that garnet-rich metasediments below, equivalent to and above massive sulphide were hydrothermal precipitates. Other manganoan garnet rocks formed during pre-metamorphic hydrothermal alteration, syn-metamorphic dehydration and reaction of manganese with prograde pelitic rocks, reaction between cataclastic manganese-bearing sulphide rocks injected along axial planes, shears and faults and pelitic wall rocks and reaction between dolerite dykes and sulphide rocks
