11 research outputs found

    Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22) (q34;q11)

    Get PDF
    BACKGROUND: Based on the site of breakpoint in t(9;22) (q34;q11), bcr-abl fusion in leukemia patients is associated with different types of transcript proteins. In this study we have seen the association of HLA genes with different types of bcr-abl transcripts. The association could predict the bcr-abl peptide presentation by particular HLA molecules. METHODS: The study included a total of 189 patients of mixed ethnicity with chronic myelogenous leukemia and acute lymphocytic leukemia who were being considered for bone marrow transplantation. Typing of bcr-abl transcripts was done by reverse transcriptase PCR method. HLA typing was performed by molecular methods. The bcr-abl and HLA association was studied by calculating the relative risks and chi-square test. RESULTS: Significant negative associations (p < 0.05) were observed with HLA-A*02 (b2a2, e1a2), -A*68 (b2a2, b3a2, e1a2), -B*14 (b2a2, b3a2, e1a2), -B*15 (b2a2, b3a2), -B*40 (b2a2), -DQB1*0303 (b2a2, b3a2), -DQB1*0603 (b2a2), -DRB1*0401 (e1a2), -DRB1*0701 (b3a2), and -DRB1*1101 (b2a2). CONCLUSIONS: The negative associations of a particular bcr-abl transcript with specific HLA alleles suggests that these alleles play a critical role in presenting peptides derived from the chimeric proteins and eliciting a successful T-cell cytotoxic response. Knowledge of differential associations between HLA phenotypes and bcr-abl fusion transcript types would help in developing better strategies for immunization with the bcr-abl peptides against t(9;22) (q34;q11)-positive leukemia

    The prenatal origins of cancer

    Full text link
    The concept that some childhood malignancies arise from postnatally persistent embryonal cells has a long history. Recent research has strengthened the links between driver mutations and embryonal and early postnatal development. This evidence, coupled with much greater detail on the cell of origin and the initial steps in embryonal cancer initiation, has identified important therapeutic targets and provided renewed interest in strategies for the early detection and prevention of childhood cancer. © 2014 Macmillan Publishers Limited. All rights reserved
    corecore