492 research outputs found
Experience-based utility and own health state valuation for a health state classification system: why do it and how to do it
In the estimation of population value sets for health state classification systems such as the EQ-5D,
there is increasing interest in asking respondents to value their own health state, sometimes referred to as "experienced-based utility values" or more correctly ownrather than hypothetical health states. Own health
state values differ to hypothetical health state values, and this may be attributed to many reasons. This paper
critically examines: whose values matter; why there is a difference between own and hypothetical values; how
to measure own health state values; and why to use own health state values. Finally, the paper also examines
other ways that own health state values can be taken into account, such as including the use of informed general
population preferences that may better take into account experience-based values
Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals
In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Genetic polymorphisms associated with the inflammatory response in bacterial meningitis
BACKGROUND
Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously.
METHODS
The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method.
RESULTS
We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients.
CONCLUSIONS
In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches
Validity of the Postoperative Morbidity Survey after abdominal aortic aneurysm repair—a prospective observational study
BACKGROUND: Currently, there is no standardised tool used to capture morbidity following abdominal aortic aneurysm (AAA) repair. The aim of this prospective observational study was to validate the Postoperative Morbidity Survey (POMS) according to its two guiding principles: to only capture morbidity substantial enough to delay discharge from hospital and to be a rapid, simple screening tool. METHODS: A total of 64 adult patients undergoing elective infrarenal AAA repair participated in the study. Following surgery, the POMS was recorded daily, by trained research staff with the clinical teams blinded, until hospital discharge or death. We modelled the data using Cox regression, accounting for the competing risk of death, with POMS as a binary time-dependent (repeated measures) internal covariate. For each day for each patient, ‘discharged’ (yes/no) was the event, with the elapsed number of days post-surgery as the time variable. We derived the hazard ratio for any POMS morbidity (score 1–9) vs. no morbidity (zero), adjusted for type of repair (endovascular versus open), age and aneurysm size. RESULTS: The hazard ratio for alive discharge with any POMS-recorded morbidity versus no morbidity was 0.130 (95 % confidence interval 0.070 to 0.243). The median time-to-discharge was 13 days after recording any POMS morbidity vs. 2 days after scoring zero for POMS morbidity. Compliance with POMS completion was 99.5 %. CONCLUSIONS: The POMS is a valid tool for capturing short-term postoperative morbidity following elective infrarenal AAA repair that is substantial enough to delay discharge from hospital. Daily POMS measurement is recommended to fully capture morbidity and allow robust analysis. The survey could be a valuable outcome measure for use in quality improvement programmes and future research
Evaluation of guided imagery as treatment for recurrent abdominal pain in children: a randomized controlled trial
BACKGROUND: Because of the paucity of effective evidence-based therapies for children with recurrent abdominal pain, we evaluated the therapeutic effect of guided imagery, a well-studied self-regulation technique. METHODS: 22 children, aged 5 – 18 years, were randomized to learn either breathing exercises alone or guided imagery with progressive muscle relaxation. Both groups had 4-weekly sessions with a therapist. Children reported the numbers of days with pain, the pain intensity, and missed activities due to abdominal pain using a daily pain diary collected at baseline and during the intervention. Monthly phone calls to the children reported the number of days with pain and the number of days of missed activities experienced during the month of and month following the intervention. Children with ≤ 4 days of pain/month and no missed activities due to pain were defined as being healed. Depression, anxiety, and somatization were measured in both children and parents at baseline. RESULTS: At baseline the children who received guided imagery had more days of pain during the preceding month (23 vs. 14 days, P = 0.04). There were no differences in the intensity of painful episodes or any baseline psychological factors between the two groups. Children who learned guided imagery with progressive muscle relaxation had significantly greater decrease in the number of days with pain than those learning breathing exercises alone after one (67% vs. 21%, P = 0.05), and two (82% vs. 45%, P < 0.01) months and significantly greater decrease in days with missed activities at one (85% vs. 15%, P = 0.02) and two (95% vs. 77%. P = 0.05) months. During the two months of follow-up, more children who had learned guided imagery met the threshold of ≤ 4 day of pain each month and no missed activities (RR = 7.3, 95%CI [1.1,48.6]) than children who learned only the breathing exercises. CONCLUSION: The therapeutic efficacy of guided imagery with progressive muscle relaxation found in this study is consistent with our present understanding of the pathophysiology of recurrent abdominal pain in children. Although unfamiliar to many pediatricians, guided imagery is a simple, noninvasive therapy with potential benefit for treating children with RAP
Structural diversity in binary nanoparticle superlattices
Assembly of small building blocks such as atoms, molecules and nanoparticles into macroscopic structures - that is, 'bottom up' assembly - is a theme that runs through chemistry, biology and material science. Bacteria(1), macromolecules(2) and nanoparticles(3) can self-assemble, generating ordered structures with a precision that challenges current lithographic techniques. The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice (BNSL)(3-7) can provide a general and inexpensive path to a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. Maximization of the nanoparticle packing density has been proposed as the driving force for BNSL formation(3,8,9), and only a few BNSL structures have been predicted to be thermodynamically stable. Recently, colloidal crystals with micrometre-scale lattice spacings have been grown from oppositely charged polymethyl methacrylate spheres(10,11). Here we demonstrate formation of more than 15 different BNSL structures, using combinations of semiconducting, metallic and magnetic nanoparticle building blocks. At least ten of these colloidal crystalline structures have not been reported previously. We demonstrate that electrical charges on sterically stabilized nanoparticles determine BNSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62551/1/nature04414.pd
β-Lactam Resistance Response Triggered by Inactivation of a Nonessential Penicillin-Binding Protein
It has long been recognized that the modification of penicillin-binding proteins (PBPs) to reduce their affinity for β-lactams is an important mechanism (target modification) by which Gram-positive cocci acquire antibiotic resistance. Among Gram-negative rods (GNR), however, this mechanism has been considered unusual, and restricted to clinically irrelevant laboratory mutants for most species. Using as a model Pseudomonas aeruginosa, high up on the list of pathogens causing life-threatening infections in hospitalized patients worldwide, we show that PBPs may also play a major role in β-lactam resistance in GNR, but through a totally distinct mechanism. Through a detailed genetic investigation, including whole-genome analysis approaches, we demonstrate that high-level (clinical) β-lactam resistance in vitro, in vivo, and in the clinical setting is driven by the inactivation of the dacB-encoded nonessential PBP4, which behaves as a trap target for β-lactams. The inactivation of this PBP is shown to determine a highly efficient and complex β-lactam resistance response, triggering overproduction of the chromosomal β-lactamase AmpC and the specific activation of the CreBC (BlrAB) two-component regulator, which in turn plays a major role in resistance. These findings are a major step forward in our understanding of β-lactam resistance biology, and, more importantly, they open up new perspectives on potential antibiotic targets for the treatment of infectious diseases
Category label and response location shifts in category learning
The category shift literature suggests that rule-based classification, an important form of explicit learning, is mediated by two separate learned associations: a stimulus-to-label association that associates stimuli and category labels, and a label-to-response association that associates category labels and responses. Three experiments investigate whether information–integration classification, an important form of implicit learning, is also mediated by two separate learned associations. Participants were trained on a rule-based or an information–integration categorization task and then the association between stimulus and category label, or between category label and response location was altered. For rule-based categories, and in line with previous research, breaking the association between stimulus and category label caused more interference than breaking the association between category label and response location. However, no differences in recovery rate emerged. For information–integration categories, breaking the association between stimulus and category label caused more interference and led to greater recovery than breaking the association between category label and response location. These results provide evidence that information–integration category learning is mediated by separate stimulus-to-label and label-to-response associations. Implications for the neurobiological basis of these two learned associations are discussed
Defensome against Toxic Diatom Aldehydes in the Sea Urchin Paracentrotus lividus
Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants
- …
