67 research outputs found
Oxygen Consumption Can Regulate the Growth of Tumors, a New Perspective on the Warburg Effect
The unique metabolism of tumors was described many years ago by Otto Warburg, who identified tumor cells with increased glycolysis and decreased mitochondrial activity. However, "aerobic glycolysis" generates fewer ATP per glucose molecule than mitochondrial oxidative phosphorylation, so in terms of energy production, it is unclear how increasing a less efficient process provides tumors with a growth advantage.We carried out a screen for loss of genetic elements in pancreatic tumor cells that accelerated their growth as tumors, and identified mitochondrial ribosomal protein L28 (MRPL28). Knockdown of MRPL28 in these cells decreased mitochondrial activity, and increased glycolysis, but paradoxically, decreased cellular growth in vitro. Following Warburg's observations, this mutation causes decreased mitochondrial function, compensatory increase in glycolysis and accelerated growth in vivo. Likewise, knockdown of either mitochondrial ribosomal protein L12 (MRPL12) or cytochrome oxidase had a similar effect. Conversely, expression of the mitochondrial uncoupling protein 1 (UCP1) increased oxygen consumption and decreased tumor growth. Finally, treatment of tumor bearing animals with dichloroacetate (DCA) increased pyruvate consumption in the mitochondria, increased total oxygen consumption, increased tumor hypoxia and slowed tumor growth.We interpret these findings to show that non-oncogenic genetic changes that alter mitochondrial metabolism can regulate tumor growth through modulation of the consumption of oxygen, which appears to be a rate limiting substrate for tumor proliferation
Management and relocation of nests of Podocnemis expansa (Schweigger, 1812) (Testudines, Podocnemididae) on the Crixás-Açu river, Brazil
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research
Purification and characterization of the constitutive nitric oxide synthase from human placenta.
Human endothelial nitric oxide synthase (NOS) mRNA was detected in human placenta. In contrast, mRNAs for human neuronal NOS or for human inducible NOS were not detected in placenta. Subsequently, NOS was purified over 3800-fold from placental extract to greater than 80% homogeneity. A single band with an apparent molecular weight of 135 kDa was identified by [125I] calmodulin binding to proteins in a sodium dodecyl sulfate-polyacrylamide gel, which is consistent with the predicted size of the endothelial NOS. Furthermore, the sequence of eight internal peptides derived from this 135-kDa protein was identical to the published sequence of human endothelial NOS. As has been shown for all constitutive NOS isozymes, the purified NOS was absolutely dependent on calcium and calmodulin. NOS was also purified from human umbilical vein endothelial cells and, on the basis of similar kinetic parameters and dependence upon calcium and calmodulin, appeared to be the same as the purified placental NOS. Together, these data indicate that the placental NOS is the constitutive NOS isozyme from endothelial tissue
Cloning, expression and biochemical characterization of xanthine and adenine phosphoribosyltransferases from Thermus thermophilus
- …
