42 research outputs found
A new concept for the combination of optical interferometers and high-resolution spectrographs
The combination of high spatial and spectral resolution in optical astronomy
enables new observational approaches to many open problems in stellar and
circumstellar astrophysics. However, constructing a high-resolution
spectrograph for an interferometer is a costly and time-intensive undertaking.
Our aim is to show that, by coupling existing high-resolution spectrographs to
existing interferometers, one could observe in the domain of high spectral and
spatial resolution, and avoid the construction of a new complex and expensive
instrument. We investigate in this article the different challenges which arise
from combining an interferometer with a high-resolution spectrograph. The
requirements for the different sub-systems are determined, with special
attention given to the problems of fringe tracking and dispersion. A concept
study for the combination of the VLTI (Very Large Telescope Interferometer)
with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other
specific instrument pairings are discussed. We show that the proposed
combination of an interferometer with a high-resolution spectrograph is indeed
feasible with current technology, for a fraction of the cost of building a
whole new spectrograph. The impact on the existing instruments and their
ongoing programs would be minimal.Comment: 27 pages, 9 figures, Experimental Astronomy; v2: accepted versio
Patient outcomes with positive pressure versus spontaneous ventilation in non-paralysed adults with the laryngeal mask
Carbon monoxide production from five volatile anesthetics in dry sodalime in a patient model: halothane and sevoflurane do produce carbon monoxide; temperature is a poor predictor of carbon monoxide production
BACKGROUND: Desflurane and enflurane have been reported to produce substantial amounts of carbon monoxide (CO) in desiccated sodalime. Isoflurane is said to produce less CO and sevoflurane and halothane should produce no CO at all. The purpose of this study is to measure the maximum amounts of CO production for all modern volatile anesthetics, with completely dry sodalime. We also tried to establish a relationship between CO production and temperature increase inside the sodalime. METHODS: A patient model was simulated using a circle anesthesia system connected to an artificial lung. Completely desiccated sodalime (950 grams) was used in this system. A low flow anesthesia (500 ml/min) was maintained using nitrous oxide with desflurane, enflurane, isoflurane, halothane or sevoflurane. For immediate quantification of CO production a portable gas chromatograph was used. Temperature was measured within the sodalime container. RESULTS: Peak concentrations of CO were very high with desflurane and enflurane (14262 and 10654 ppm respectively). It was lower with isoflurane (2512 ppm). We also measured small concentrations of CO for sevoflurane and halothane. No significant temperature increases were detected with high CO productions. CONCLUSION: All modern volatile anesthetics produce CO in desiccated sodalime. Sodalime temperature increase is a poor predictor of CO production
Female Institutional Directors on Boards and Firm Value
The aim of this research is to examine what impact female institutional directors on boards have on corporate performance. Previous research shows that institutional female directors cannot be considered as a homogeneous group since they represent investors who may or may not maintain business relations with the companies on whose corporate boards they sit. Thus, it is not only the effect of female institutional directors as a whole on firm value that has been analysed, but also the impact of pressure-resistant female directors, who represent institutional investors (investment, pension and mutual funds) that only invest in the company, and do not maintain a business relation with the firm. We hypothesize that there is a non-linear association, specifically quadratic, between institutional and pressure-resistant female directors on boards and corporate performance. Our results report that female institutional directors on boards enhance corporate performance, but when they reach a certain threshold on boards (11.72 %), firm value decreases. In line with female institutional directors, pressure-resistant female directors on boards also increase firm value, but only up to a certain figure (12.71 % on boards), above which they have a negative impact on firm performance. These findings are consistent with an inverted U-shaped relationship between female institutional directors and pressure-resistant female directors and firm performance
