16,205 research outputs found
Checking and Enforcing Security through Opacity in Healthcare Applications
The Internet of Things (IoT) is a paradigm that can tremendously
revolutionize health care thus benefiting both hospitals, doctors and patients.
In this context, protecting the IoT in health care against interference,
including service attacks and malwares, is challenging. Opacity is a
confidentiality property capturing a system's ability to keep a subset of its
behavior hidden from passive observers. In this work, we seek to introduce an
IoT-based heart attack detection system, that could be life-saving for patients
without risking their need for privacy through the verification and enforcement
of opacity. Our main contributions are the use of a tool to verify opacity in
three of its forms, so as to detect privacy leaks in our system. Furthermore,
we develop an efficient, Symbolic Observation Graph (SOG)-based algorithm for
enforcing opacity
Flexible transistor active matrix array with all screen-printed electrodes
Flexible transistor active matrix array is fabricated on PEN substrate using all screen-printed gate, source and drain electrodes. Parylene-C and DNTT act as gate dielectric layer and semiconductor, respectively. The transistor possesses high mobility (0.33 cm2V-1 s-1), large on/off ratio (< 106) and low leakage current (10 pA). Active matrix array consists of 10×10 transistors were demonstrated. Transistors exhibited average mobility of 0.29 cm2V-1s-1 and on/off ratio larger than 104 in array form. In the transistor array, we achieve 75μm channel length and a size of 2 mm × 2 mm for each element in the array which indicates the current screen-printing method has large potential in large-area circuits and display applications. © 2013 SPIE.published_or_final_versio
Albuminuria is a marker of increasing intracranial and extracranial vascular involvement in Type 2 diabetic Chinese patients
AIMS/HYPOTHESIS: Albuminuria has been reported to be a marker of cardiovascular risk factors and disease morbidity and mortality, but its relationship with intracerebral atherosclerotic disease is less clear. The aim of this study was to investigate the association between albuminuria and intracranial and extracranial vascular involvement in Chinese Type 2 diabetic patients. METHODS: The anthropometric and fasting biochemical measurements of 966 Type 2 diabetic patients with normoalbuminuria (55.6%), microalbuminuria (27.7%) or macroalbuminuria (16.7%) were compared. The prevalence of microvascular and macrovascular disease and middle cerebral artery (MCA) stenosis, measured by transcranial Doppler ultrasound, were also compared between the groups. RESULTS: Albuminuria was closely associated with a range of adverse parameters, including high BP, dyslipidaemia, smoking and adiposity (all p<0.01). The prevalence of microvascular disease (retinopathy p<0.001) and macrovascular disease (peripheral vascular disease p=0.012, myocardial infarction, p=0.004, MCA stenosis p<0.001) increased significantly with increasing levels of albuminuria. Albuminuria was also found to be an independent predictor of microvascular and macrovascular disease. CONCLUSIONS/INTERPRETATION: Albuminuria was an independent predictor of increasing levels of vascular risk factors and microvascular and macrovascular disease in this group of Type 2 diabetic patients, and a possible role for albuminuria as a marker of intracranial cerebrovascular disease should be further investigated.postprin
LNK (SH2B3): paradoxical effects in ovarian cancer.
LNK (SH2B3) is an adaptor protein studied extensively in normal and malignant hematopoietic cells. In these cells, it downregulates activated tyrosine kinases at the cell surface resulting in an antiproliferative effect. To date, no studies have examined activities of LNK in solid tumors. In this study, we found by in silico analysis and staining tissue arrays that the levels of LNK expression were elevated in high-grade ovarian cancer. To test the functional importance of this observation, LNK was either overexpressed or silenced in several ovarian cancer cell lines. Remarkably, overexpression of LNK rendered the cells resistant to death induced by either serum starvation or nutrient deprivation, and generated larger tumors using a murine xenograft model. In contrast, silencing of LNK decreased ovarian cancer cell growth in vitro and in vivo. Western blot studies indicated that overexpression of LNK upregulated and extended the transduction of the mitogenic signal, whereas silencing of LNK produced the opposite effects. Furthermore, forced expression of LNK reduced cell size, inhibited cell migration and markedly enhanced cell adhesion. Liquid chromatography-mass spectroscopy identified 14-3-3 as one of the LNK-binding partners. Our results suggest that in contrast to the findings in hematologic malignancies, the adaptor protein LNK acts as a positive signal transduction modulator in ovarian cancers
Overexpression of protein kinase C-beta 1 isoenzyme suppresses SC-236-induced apoptosis in gastric epithelial cells
published_or_final_versio
New zebrafish models of neurodegeneration
In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms
Generalized Painleve-Gullstrand descriptions of Kerr-Newman black holes
Generalized Painleve-Gullstrand metrics are explicitly constructed for the
Kerr-Newman family of charged rotating black holes. These descriptions are free
of all coordinate singularities; moreover, unlike the Doran and other proposed
metrics, an extra tunable function is introduced to ensure all variables in the
metrics remain real for all values of the mass M, charge Q, angular momentum
aM, and cosmological constant \Lambda > - 3/(a^2). To describe fermions in
Kerr-Newman spacetimes, the stronger requirement of non-singular vierbein
one-forms at the horizon(s) is imposed and coordinate singularities are
eliminated by local Lorentz boosts. Other known vierbein fields of Kerr-Newman
black holes are analysed and discussed; and it is revealed that some of these
descriptions are actually not related by physical Lorentz transformations to
the original Kerr-Newman expression in Boyer-Lindquist coordinates - which is
the reason complex components appear (for certain ranges of the radial
coordinate) in these metrics. As an application of our constructions the
correct effective Hawking temperature for Kerr black holes is derived with the
method of Parikh and Wilczek.Comment: 5 pages; extended to include application to derivation of Hawking
radiation for Kerr black holes with Parikh-Wilczek metho
Flat bands as a route to high-temperature superconductivity in graphite
Superconductivity is traditionally viewed as a low-temperature phenomenon.
Within the BCS theory this is understood to result from the fact that the
pairing of electrons takes place only close to the usually two-dimensional
Fermi surface residing at a finite chemical potential. Because of this, the
critical temperature is exponentially suppressed compared to the microscopic
energy scales. On the other hand, pairing electrons around a dispersionless
(flat) energy band leads to very strong superconductivity, with a mean-field
critical temperature linearly proportional to the microscopic coupling
constant. The prize to be paid is that flat bands can generally be generated
only on surfaces and interfaces, where high-temperature superconductivity would
show up. The flat-band character and the low dimensionality also mean that
despite the high critical temperature such a superconducting state would be
subject to strong fluctuations. Here we discuss the topological and
non-topological flat bands discussed in different systems, and show that
graphite is a good candidate for showing high-temperature flat-band interface
superconductivity.Comment: Submitted as a chapter to the book on "Basic Physics of
functionalized Graphite", 21 pages, 12 figure
Impact of calcium on salivary α-amylase activity, starch paste apparent viscosity and thickness perception
Thickness perception of starch-thickened products
during eating has been linked to starch viscosity and
salivary amylase activity. Calcium is an essential cofactor
for α-amylase and there is anecdotal evidence that adding
extra calcium affects amylase activity in processes like
mashing of beer. The aims of this paper were to (1) investigate the role of salivary calcium on α-amylase
activity and (2) to measure the effect of calcium concentration on apparent viscosity and thickness perception when interacting with salivary α-amylase in starch-based samples.
α-Amylase activity in saliva samples from 28 people
was assessed using a typical starch pasting cycle (up to 95 °C). The activity of the enzyme (as measured by the change in starch apparent viscosity) was maintained by the presence of calcium, probably by protecting the enzyme from heat denaturation. Enhancement of α-amylase activity by calcium at 37 °C was also observed although to a smaller extent. Sensory analysis showed a general trend of decreased
thickness perception in the presence of calcium, but the result was only significant for one pair of samples, suggesting a limited impact of calcium enhanced enzyme activity on perceived thickness
A new mib allele with a chromosomal deletion covering foxc1a exhibits anterior somite specification defect
mibnn2002, found from an allele screen, showed early segmentation defect and severe cell death phenotypes, which are different from previously known mib mutants. Despite distinct morphological phenotypes, the typical mib molecular phenotypes: her4 down-regulation, neurogenic phenotype and cold sensitive dlc expression pattern, still remained. The linkage analysis also indicated that mibnn2002 is a new mib allele. Failure of specification in anterior 7-10 somites is likely due to lack of foxc1a expression in mibnn2002 homozygotes. Somites and somite markers gradually appeared after 7-10 somite stage, suggesting that foxc1a is only essential for the formation of anterior 7-10 somites. Apoptosis began around 16-somite stage with p53 up-regulation. To find the possible links of mib, foxc1a and apoptosis, transcriptome analysis was employed. About 140 genes, including wnt3a, foxc1a and mib, were not detected in the homozygotes. Overexpression of foxc1a mRNA in mibnn2002 homozygotes partially rescued the anterior somite specification. In the process of characterizing mibnn2002 mutation, we integrated the scaffolds containing mib locus into chromosome 2 (or linkage group 2, LG2) based on synteny comparison and transcriptome results. Genomic PCR analysis further supported the conclusion and showed that mibnn2002 has a chromosomal deletion with the size of about 9.6 Mbp.published_or_final_versio
- …
