2,927 research outputs found
A comparative framework: how broadly applicable is a 'rigorous' critical junctures framework?
The paper tests Hogan and Doyle's (2007, 2008) framework for examining critical junctures. This framework sought to incorporate the concept of ideational change in understanding critical junctures. Until its development, frameworks utilized in identifying critical junctures were subjective, seeking only to identify crisis, and subsequent policy changes, arguing that one invariably led to the other, as both occurred around the same time. Hogan and Doyle (2007, 2008) hypothesized ideational change as an intermediating variable in their framework, determining if, and when, a crisis leads to radical policy change. Here we test this framework on cases similar to, but different from, those employed in developing the exemplar. This will enable us determine whether the framework's relegation of ideational change to a condition of crisis holds, or, if ideational change has more importance than is ascribed to it by this framework. This will also enable us determined if the framework itself is robust, and fit for the purposes it was designed to perform — identifying the nature of policy change
Several types of types in programming languages
Types are an important part of any modern programming language, but we often
forget that the concept of type we understand nowadays is not the same it was
perceived in the sixties. Moreover, we conflate the concept of "type" in
programming languages with the concept of the same name in mathematical logic,
an identification that is only the result of the convergence of two different
paths, which started apart with different aims. The paper will present several
remarks (some historical, some of more conceptual character) on the subject, as
a basis for a further investigation. The thesis we will argue is that there are
three different characters at play in programming languages, all of them now
called types: the technical concept used in language design to guide
implementation; the general abstraction mechanism used as a modelling tool; the
classifying tool inherited from mathematical logic. We will suggest three
possible dates ad quem for their presence in the programming language
literature, suggesting that the emergence of the concept of type in computer
science is relatively independent from the logical tradition, until the
Curry-Howard isomorphism will make an explicit bridge between them.Comment: History and Philosophy of Computing, HAPOC 2015. To appear in LNC
Colours and luminosities of z=0.1 simulated galaxies in the EAGLE simulations
We calculate the colours and luminosities of redshift z = 0.1 galaxies from the EAGLE simulation suite using the GALAXEV population synthesis models. We take into account obscuration by dust in birth clouds and diffuse ISM using a two-component screen model, following the prescription of Charlot and Fall. We compare models in which the dust optical depth is constant to models where it depends on gas metallicity, gas fraction and orientation. The colours of EAGLE galaxies for the more sophisticated models are in broad agreement with those of observed galaxies. In particular, EAGLE produces a red sequence of passive galaxies and a blue cloud of star forming galaxies, with approximately the correct fraction of galaxies in each population and with g-r colours within 0.1 magnitudes of those observed. Luminosity functions from UV to NIR wavelengths differ from observations at a level comparable to systematic shifts resulting from a choice between Petrosian and Kron photometric apertures. Despite the generally good agreement there are clear discrepancies with observations. The blue cloud of EAGLE galaxies extends to somewhat higher luminosities than in the data, consistent with the modest underestimate of the passive fraction in massive EAGLE galaxies. There is also a moderate excess of bright blue galaxies compared to observations. The overall level of agreement with the observed colour distribution suggests that EAGLE galaxies at z = 0.1 have ages, metallicities and levels of obscuration that are comparable to those of observed galaxies
Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: the HAPPY study
Clustering of cardiometabolic risk factors can occur during childhood and predisposes individuals to cardiometabolic disease. This study calculated clustered cardiometabolic risk in 100 children and adolescents aged 10-14 years (59 girls) and explored differences according to cardiorespiratory fitness (CRF) levels and time spent at different physical activity (PA) intensities. CRF was determined using a maximal cycle ergometer test, and PA was assessed using accelerometry. A cardiometabolic risk score was computed as the sum of the standardised scores for waist circumference, blood pressure, total cholesterol/high-density lipoprotein ratio, triglycerides and glucose. Differences in clustered cardiometabolic risk between fit and unfit participants, according to previously proposed health-related threshold values, and between tertiles for PA subcomponents were assessed using ANCOVA. Clustered risk was significantly lower (p < 0.001) in the fit group (mean 1.21 ± 3.42) compared to the unfit group (mean -0.74 ± 2.22), while no differences existed between tertiles for any subcomponent of PA. Conclusion These findings suggest that CRF may have an important cardioprotective role in children and adolescents and highlights the importance of promoting CRF in youth
Extended RDF: Computability and Complexity Issues
ERDF stable model semantics is a recently proposed semantics for
ERDF ontologies and a faithful extension of RDFS semantics on RDF graphs.
In this paper, we elaborate on the computability and complexity issues of the
ERDF stable model semantics. Based on the undecidability result of ERDF
stable model semantics, decidability under this semantics cannot be achieved,
unless ERDF ontologies of restricted syntax are considered. Therefore, we
propose a slightly modified semantics for ERDF ontologies, called ERDF #n-
stable model semantics. We show that entailment under this semantics is, in
general, decidable and also extends RDFS entailment. Equivalence statements
between the two semantics are provided. Additionally, we provide algorithms
that compute the ERDF #n-stable models of syntax-restricted and general
ERDF ontologies. Further, we provide complexity results for the ERDF #nstable
model semantics on syntax-restricted and general ERDF ontologies.
Finally, we provide complexity results for the ERDF stable model semantics
on syntax-restricted ERDF ontologies
The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations
We present results from thirteen cosmological simulations that explore the parameter space of the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) simulation project. Four of the simulations follow the evolution of a periodic cube L = 50 cMpc on a side, and each employs a different subgrid model of the energetic feedback associated with star formation. The relevant parameters were adjusted so that the simulations each reproduce the observed galaxy stellar mass function at z = 0.1. Three of the simulations fail to form disc galaxies as extended as observed, and we show analytically that this is a consequence of numerical radiative losses that reduce the efficiency of stellar feedback in high-density gas. Such losses are greatly reduced in the fourth simulation - the EAGLE reference model - by injecting more energy in higher density gas. This model produces galaxies with the observed size distribution, and also reproduces many galaxy scaling relations. In the remaining nine simulations, a single parameter or process of the reference model was varied at a time. We find that the properties of galaxies with stellar mass <~ M* (the "knee" of the galaxy stellar mass function) are largely governed by feedback associated with star formation, while those of more massive galaxies are also controlled by feedback from accretion onto their central black holes. Both processes must be efficient in order to reproduce the observed galaxy population. In general, simulations that have been calibrated to reproduce the low-redshift galaxy stellar mass function will still not form realistic galaxies, but the additional requirement that galaxy sizes be acceptable leads to agreement with a large range of observables
Influence of modern coal-fired power technologies on fly ash properties and its use in concrete
The work reported in this paper investigated the properties and use of fly ash (FA) produced from technologies developed to reduce the environmental impact and improve the efficiency of the coal-fired power generation process. These include nitrogen oxides (NO x) reduction, co-combustion, supercritical steam technology and oxy-fuel combustion. The nine FA samples examined from these technologies were characterised physically, chemically and in terms of their reactivity. Tests were also carried out to determine the consistence (slump) and compressive strength of FA concretes. Comparisons were made with a selection of reference FAs, the requirements of BS EN 450-1 and reported FA studies from the 1980s and 1990s. The results indicated that, for some technologies, the FA tended to be coarser and of higher loss on ignition (co-combustion and in-combustion NO x reduction) while, for others lower carbon contents were found (supercritical steam) or there was little obvious effect. FA chemistry was slightly affected in some cases, but mainly as expected for the coal being used. There was general agreement between water requirement and activity index with FA fineness for the materials tested. For the FA concretes, similar effects were noted in terms of the dosage of superplasticising admixture needed for a target slump and compressive strength. The behaviour of the materials from the new technologies was found to be similar to that reported in earlier studies on FA and suggests suitability for their use in concrete construction. </p
Assisted evolution enables HIV-1 to overcome a high trim5α-imposed genetic barrier to rhesus macaque tropism
Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an 'assisted evolution' approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection
The EAGLE simulation of galaxy formation: public release of halo and galaxy catalogues
We present the public data release of halo and galaxy catalogues extracted from the EAGLE suite of cosmological hydrodynamical simulations of galaxy formation. These simulations were performed with an enhanced version of the GADGET code that includes a modified hydrodynamics solver, time-step limiter and subgrid treatments of baryonic physics, such as stellar mass loss, element-by-element radiative cooling, star formation and feedback from star formation and black hole accretion. The simulation suite includes runs performed in volumes ranging from 25 to 100 comoving megaparsecs per side, with numerical resolution chosen to marginally resolve the Jeans mass of the gas at the star formation threshold. The free parameters of the subgrid models for feedback are calibrated to the redshift z=0 galaxy stellar mass function, galaxy sizes and black hole mass - stellar mass relation. The simulations have been shown to match a wide range of observations for present-day and higher-redshift galaxies. The raw particle data have been used to link galaxies across redshifts by creating merger trees. The indexing of the tree produces a simple way to connect a galaxy at one redshift to its progenitors at higher redshift and to identify its descendants at lower redshift. In this paper we present a relational database which we are making available for general use. A large number of properties of haloes and galaxies and their merger trees are stored in the database, including stellar masses, star formation rates, metallicities, photometric measurements and mock gri images. Complex queries can be created to explore the evolution of more than 10^5 galaxies, examples of which are provided in appendix. (abridged
- …
