107 research outputs found

    Triplet pair correlations and nonmonotonic supercurrent decay with Cr thickness in Nb/Cr/Fe/Nb Josephson devices

    Get PDF
    Supercurrents carry charge but not spin in the vast majority of superconductors. This is because the charge carriers are Cooper pairs which are formed of electrons with antiparallel spins (singlet pairs). It is now established that if singlet pairs propagate through a superconductor interface with an inhomogeneous ferromagnet, triplet pair correlations form so the supercurrents can acquire a net spin component. Although the spins at sputter-deposited Fe/Cr interfaces can be frustrated due to surface roughness and interdiffusion, an antiferromagnetic spin density wave (SDW) state can still form in Cr close to the interface. Here, we show evidence for triplet pair correlations in Josephson junctions with Cr/Fe and Cr/Fe/Cr barriers. Although the exact mechanism of pair conversion is unknown, we propose a simple model in which a SDW state in Cr and frustrated spins at the Cr/Fe interfaces serve as spin-mixers for generating triplet supercurrents and so provide a potential means to generating large superconducting spin current densities.The work was funded by the UK Royal Society and the European Research Council (AIG "Superspin").This is the accepted version of an article which originally appeared in Physical Review B. The full version is available at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.104505

    Reversible control of spin-polarized supercurrents in ferromagnetic Josephson junctions.

    Get PDF
    Magnetic inhomogeneity at a superconductor (S)-ferromagnet (F) interface converts spin-singlet Cooper pairs into spin-one triplet pairs. These pairs are immune to the pair-breaking exchange field in F and support a long-range proximity effect. Although recent experiments have confirmed the existence of spin-polarized triplet supercurrents in S-F-S Josephson junctions, reversible control of the supercurrent has been impossible because of the robust preconfigured nature of the inhomogeneity. Here, we use a barrier comprising three F layers whose relative magnetic orientation, and hence the interfacial inhomogeneity, can be controlled by small magnetic fields; we show that this enables full control of the triplet supercurrent and, by using finite element micromagnetic simulations, we can directly relate the experimental data to the theoretical models which provide a general framework to understand the role played by magnetic states in long-range supercurrent modulation.This is the author's accepted manuscript. It will be under embargo until the 26th of February 2015. The final version is published by NPG in Nature Communications here: http://www.nature.com/ncomms/2014/140826/ncomms5771/full/ncomms5771.html

    Large Superconducting Spin Valve Effect and Ultrasmall Exchange Splitting in Epitaxial Rare-Earth-Niobium Trilayers.

    Get PDF
    Epitaxial Ho/Nb/Ho and Dy/Nb/Dy superconducting spin valves show a reversible change in the zero-field critical temperature (ΔT(c0)) of ∼400  mK and an infinite magnetoresistance on changing the relative magnetization of the Ho or Dy layers. Unlike transition-metal superconducting spin valves, which show much smaller ΔT(c0) values, our results can be quantitatively modeled. However, the fits require an extraordinarily low induced exchange splitting which is dramatically lower than known values for rare-earth Fermi-level electrons, implying that new models for the magnetic proximity effect may be required.This work is partially supported by ERC AiG “Superspin”. Yuanzhou Gu acknowledges financial support from King’s College, Cambridge.This is the accepted manuscript of a paper published in Physical Review Letters (Phys. Rev. Lett. 115, 067201). The final version is available at http://dx.doi.org/10.1103/PhysRevLett.115.06720

    Evidence for spin selectivity of triplet pairs in superconducting spin valves.

    Get PDF
    Spin selectivity in a ferromagnet results from a difference in the density of up- and down-spin electrons at the Fermi energy as a consequence of which the scattering rates depend on the spin orientation of the electrons. This property is utilized in spintronics to control the flow of electrons by ferromagnets in a ferromagnet (F1)/normal metal (N)/ferromagnet (F2) spin valve, where F1 acts as the polarizer and F2 the analyser. The feasibility of superconducting spintronics depends on the spin sensitivity of ferromagnets to the spin of the equal spin-triplet Cooper pairs, which arise in superconductor (S)-ferromagnet (F) heterostructures with magnetic inhomogeneity at the S-F interface. Here we report a critical temperature dependence on magnetic configuration in current-in-plane F-S-F spin valves with a holmium spin mixer at the S-F interface providing evidence of a spin selectivity of the ferromagnets to the spin of the triplet Cooper pairs.This work was funded by the Royal Society through a University Research Fellowship “Superconducting Spintronics” held by J.W.A.R. M.G.B acknowledges funding from the UK EPSRC and the European Commission through an ERC Advanced Investigator Grant "Superspin". C.B.S. and R.G.J.S were supported by the Erasmus exchange programme and the Leiden Outbound Grant. C.B.S. acknowledges Prof. Jan Aarts’ for scientific input. The work of F.S.B and A. O. have been supported by the Spanish Ministry of Economy and Competitiveness under Project FIS2011-28851-C02-02. The work of A. O. have also been supported by the CSIC and the European Social Fund under JAE-Predoc program and the EU-FP 7 MICROKELVIN project (Grant No. 228464).This is the accepted version of an article originally published in Nature Communications. The final version is available at http://www.nature.com/ncomms/2014/140109/ncomms4048/full/ncomms4048.html. © Nature Publishing Group. Reuse rights are available at http://www.nature.com/authors/policies/license.html

    Magnetic field dependence of the proximity-induced triplet superconductivity at ferromagnet/superconductor interfaces

    Get PDF
    Long-ranged superconductor proximity effects recently found in superconductor-ferromagnetic (S-F) systems are generally attributed to the formation of triplet-pairing correlations due to various forms of magnetic inhomogeneities at the S-F interface. In order to investigate this conjecture within a single F layer coupled to a superconductor, we performed scanning tunneling spectroscopy on bilayers of La2/3Ca1/3MnO3 (LCMO) ferromagnetic thin-films grown on high temperature superconducting films of YBa2Cu3O7- (YBCO) or Pr1.85Ca0.15CuO4 (PCCO) under various magnetic fields. We find a strong correlation between the magnitude of superconductor-related spectral features measured on the LCMO layer and the degree of magnetic inhomogeneity controlled by the external magnetic field. This corroborates theoretical predictions regarding the role played by magnetic inhomogeneities in inducing triplet-pairing at S-F interfaces.This research was supported in parts by the joint German-Israeli DIP Project (G.K. and O.M.), the United States-Israel Binational Science Foundation (O.M.), the Harry de Jur Chair in Applied Science (O.M.), the Karl Stoll Chair in advanced materials at the Technion (G.K.), the Leverhulme Trust through an International Network Grant (J.W.A.R., M.G.B. and O.M.) and the Royal Society (J.W.A.R.).This is the accepted manuscript version. The final published version is available from the publishers at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.180506. © 2014 AP

    Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces.

    Get PDF
    The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces.Engineering and Physical Sciences Research Council (Grant ID: NanoDTC EP/G037221/1)This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms905

    p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

    Get PDF
    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p\textit{p}-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p\textit{p}-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.The work was funded by the following agencies: Royal Society (‘Superconducting Spintronics’), Leverhulme Trust (IN-2013-033), Schiff Foundation, the EPSRC (EP/N017242/1, EP/G037221/1, EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/M507799/1, EP/L016087/1), ERC Grant Hetero2D, EU Graphene Flagship, COST Action MP-1201, MSCA-IFEF-ST No. 656485-Spin3, Outstanding Academic Fellows programme at NTNU, Research Council of Norway (205591, 216700 and 24080)

    Intrinsic paramagnetic meissner effect due to s-wave odd-frequency superconductivity

    Get PDF
    In 1933, Meissner and Ochsenfeld reported the expulsion of magnetic flux, the diamagnetic Meissner effect, from the interior of superconducting lead. This discovery was crucial in formulating the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. In exotic superconducting systems BCS theory does not strictly apply. A classical example is a superconductor-magnet hybrid system where magnetic ordering breaks time-reversal symmetry of the superconducting condensate and results in the stabilisation of an odd-frequency superconducting state. It has been predicted that under appropriate conditions, odd-frequency superconductivity should manifest in the Meissner state as fluctuations in the sign of the magnetic susceptibility meaning that the superconductivity can either repel (diamagnetic) or attract (paramagnetic) external magnetic flux. Here we report local probe measurements of faint magnetic fields in a Au/Ho/Nb trilayer system using low energy muons, where antiferromagnetic Ho (4.5 nm) breaks time-reversal symmetry of the proximity induced pair correlations in Au. From depth-resolved measurements below the superconducting transition of Nb we observe a local enhancement of the magnetic field in Au that exceeds the externally applied field, thus proving the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state.J.W.A.R. acknowledges financial support from the Royal Society through a University Research Fellowship. J.W.A.R. and A.D.B. acknowledge financial support from the UK EPSRC through NanoDTC EP/G037221/1 and the Leverhulme Trust through an International Network Grant (IN-2013-033). A.D.B. also acknowledges additional financial support from the Schiff Foundation. X.L.W. and J.H.Z. acknowledge support from the MOST of China (2015CB921500). J.L. acknowledges support from the Outstanding Academic Fellows programme at NTNU, the Norwegian Research Council Grant (205591, FRINAT, 216700). J. L., J.W.A.R, and A.D.B. finally acknowledge support from the COST Action MP-1201 'Novel Functionalities through Optimized Confinement of Condensate and Fields.' S.L. and M.G.F. acknowledge the support of the EPSRC through Grant No. EP/J01060X. The muSR measurements were performed at the Swiss Muon Source (SµS), at the Paul Scherrer Institute in Villigen, Switzerland. The project has also received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under the NMI3-II Grant number 283883.This is the final version of the article. It first appeared from APS via http://dx.doi.org/10.1103/PhysRevX.5.04102

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]
    corecore