11 research outputs found

    Structure and Photoluminescent Properties of ZnO Encapsulated in Mesoporous Silica SBA-15 Fabricated by Two-Solvent Strategy

    Get PDF
    The two-solvent method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/SBA-15). The prepared ZnO/SBA-15 samples have been studied by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm, and photoluminescence spectroscopy. The ZnO/SBA-15 nanocomposite has the ordered hexagonal mesostructure of SBA-15. ZnO clusters of a high loading are distributed in the channels of SBA-15. Photoluminescence spectra show the UV emission band around 368 nm, the violet emission around 420 nm, and the blue emission around 457 nm. The UV emission is attributed to band-edge emission of ZnO. The violet emission results from the oxygen vacancies on the ZnO–SiO2interface traps. The blue emission is from the oxygen vacancies or interstitial zinc ions of ZnO. The UV emission and blue emission show a blue-shift phenomenon due to quantum-confinement-induced energy gap enhancement of ZnO clusters. The ZnO clusters encapsulated in SBA-15 can be used as light-emitting diodes and ultraviolet nanolasers

    Fluorescent oligo and poly-thiophenes and their utilization for recording biological events of diverse origin—when organic chemistry meets biology

    No full text
    The technique of using luminescent oligo-thiophenes and luminescent conjugated poly-thiophenes to monitor biological processes has gained increased interest from scientists within different research areas, ranging from organic chemistry and photo-physics to biology since its introduction. The technique is generally straightforward and requires only standard equipment, and the result is available within minutes from sample preparation. In this review, the syntheses of oligo and polythiophenes developed over the last decades are discussed. Furthermore, the utilization of these molecular agents for exploring biological events, e.g., DNA hybridization or protein misfolding events, are covered

    Conducting Polymers and Their Composites

    No full text

    Conducting Polymer Nanomaterials and Their Applications

    No full text
    A paradigm shift takes place in the fabrication of conducting polymers from bulky features with microsize to ultrafine features with nanometer range. Novel conducting polymer nanomaterials require the potential to control synthetic approaches of conducting polymer on molecular and atomic levels. In this article, the synthetic methodology of conducting polymer has been briefly considered with chemical oxidation polymerization and electrochemical polymerization. The recent achievements in the fabrication of conducting polymer nanomaterials have been extensively reviewed with respect to soft template method, hard template method and template-free method. It also details the morphological spectrum of conducting polymer nanomaterials such as nanoparticle, core-shell nanomaterial, hollow nanosphere, nanofiber/nanorod, nanotube, thin film and nanopattern and nanocomposite. In addition, their applications are discussed under nanometer-sized dimension.This work has been financially supported by the Brain Korea 21 program of the Korean Ministry of Education and the Hyperstructured Organic Materials Research Center supported by Korea Science and Engineering Foundation

    Progress in the Synthesis of Poly (3-hexylthiophene)

    No full text
    corecore