10 research outputs found

    Automated Segmentation and Quantification of White Matter Hyperintensities in Acute Ischemic Stroke Patients with Cerebral Infarction

    No full text
    White matter hyperintensities (WMHs) of presumed vascular origin are common in ageing population, especially in patients with acute cerebral infarction and the volume has been reported to be associated with mental impairment and the risk of hemorrhage from antithrombotic agents. WMHs delineation can be computerized to minimize human bias. However, the presence of cerebral infarcts greatly degrades the accuracy of WMHs detection and thus limits the application of computerized delineation to patients with acute cerebral infarction. We propose a computer-assisted segmentation method to depict WMHs in the presence of cerebral infarcts in combined T1-weighted, fluid attenuation inversion recovery, and diffusion-weighted magnetic resonance imaging (MRI). The proposed method detects WMHs by empirical threshold and atlas information, with subtraction of white matter voxels affected by acute infarction. The method was derived using MRI from 25 hemispheres with WMHs only and 13 hemispheres with both WMHs and cerebral infarcts. Similarity index (SI) and correlation were utilized to assess the agreement between the new automated method and a gold standard visually guided semi-automated method done by an expert rater. The proposed WMHs segmentation approach produced average SI, sensitivity and specificity of 83.142±11.742, 84.154±16.086 and 99.988±0.029% with WMHs only and of 68.826±14.036, 74.381±18.473 and 99.956±0.054% with both WMHs and cerebral infarcts in the derivation cohort. The performance of the proposed method with an external validation cohort was also highly consistent with that of the experienced rater

    Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb−1 of √s= 8 TeV proton-proton collision data with the ATLAS detector

    No full text
    © 2014, The Author(s). A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3fb−1of proton-proton collision data at √ s= 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale Λ below 63 TeV are excluded, independently of tan β. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090 GeV are excluded
    corecore