4,402 research outputs found
Detecting orbits along subvarieties via the moment map
Let G be a (real or complex) linear reductive algebraic group acting on an affine variety V . Let W be a subvariety. In this work we study how the G-orbits intersect W. We develop a criterion to determine when the intersection can be described as a finite union of orbits of a reductive subgroup. The conditions of the criterion are easily verified in practice and are used to develop techniques to study left-invariant Ricci soliton metrics on nilpotent Lie groups. A nilpotent Lie group is called an Einstein nilradical if it admits a left-invariant Ricci soliton metric. Applying the techniques developed, we show that the classification of Einstein nilradicals can be reduced to the class of so-called indecomposable groups. Among other applications, we construct arbitrarily large continuous families of (non-isomorphic) nilpotent Lie groups which do not admit left-invariant Ricci soliton metrics. The note finishes by applying our techniques to the adjoint representation of reductive Lie groups. The classical result of finiteness of nilpotent orbits is reproved and it is shown that each of these orbits contains a critical point of the norm squared of the moment map
Assessment of institutional barriers to the use of natural gas fuel in automotive vehicle fleets
Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified. Recommendations for barrier removal were developed. Eight types of institutional barriers were assessed: (1) lack of a national standard for the safe design and certification of natural gas vehicles and refueling stations; (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements; (3) need for clarification of EPA's tampering enforcement policy; (4) the U.S. hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale for resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufactures warranties; and (8) need for a natural gas to gasoline equivalent units conversion factor for use in calculation of state road use taxes
Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses.
Wavelength comparisons have indicated that circadian phase-shifting and enhancement of subjective and EEG-correlates of alertness have a higher sensitivity to short wavelength visible light. The aim of the current study was to test whether polychromatic light enriched in the blue portion of the spectrum (17,000 K) has increased efficacy for melatonin suppression, circadian phase-shifting, and alertness as compared to an equal photon density exposure to a standard white polychromatic light (4000 K). Twenty healthy participants were studied in a time-free environment for 7 days. The protocol included two baseline days followed by a 26-h constant routine (CR1) to assess initial circadian phase. Following CR1, participants were exposed to a full-field fluorescent light (1 × 10 14 photons/cm 2 /s, 4000 K or 17,000 K, n = 10/condition) for 6.5 h during the biological night. Following an 8 h recovery sleep, a second 30-h CR was performed. Melatonin suppression was assessed from the difference during the light exposure and the corresponding clock time 24 h earlier during CR1. Phase-shifts were calculated from the clock time difference in dim light melatonin onset time (DLMO) between CR1 and CR2. Blue-enriched light caused significantly greater suppression of melatonin than standard light ((mean ± SD) 70.9 ± 19.6% and 42.8 ± 29.1%, respectively, p \u3c 0.05). There was no significant difference in the magnitude of phase delay shifts. Blue-enriched light significantly improved subjective alertness (p \u3c 0.05) but no differences were found for objective alertness. These data contribute to the optimization of the short wavelength-enriched spectra and intensities needed for circadian, neuroendocrine and neurobehavioral regulation
ALD grown zinc oxide with controllable electrical properties
The paper presents results for zinc oxide films grown at low temperature
regime by Atomic Layer Deposition (ALD). We discuss electrical properties of
such films and show that low temperature deposition results in oxygen-rich ZnO
layers in which free carrier concentration is very low. For optimized ALD
process it can reach the level of 10^15 cm-3, while mobility of electrons is
between 20 and 50 cm2/Vs. Electrical parameters of ZnO films deposited by ALD
at low temperature regime are appropriate for constructing of the ZnO-based p-n
and Schottky junctions. We demonstrate that such junctions are characterized by
the rectification ratio high enough to fulfill requirements of 3D memories and
are deposited at temperature 100degC which makes them appropriate for
deposition on organic substrates.Comment: 29 pages, 9 figures, 64 references, review pape
Recommended from our members
Impact of obesity with impaired glucose tolerance on retinal degeneration in a rat model of metabolic syndrome.
PurposeMetabolic syndrome (MetS) is associated with several degenerative diseases, including retinal degeneration. Previously, we reported on progressive retinal degeneration in a spontaneous obese rat (WNIN/Ob) model. In this study, we investigated the additional effect of impaired glucose tolerance (IGT), an essential component of MetS, on retinal degeneration using the WNIN/GR-Ob rat model.MethodsThe retinal morphology and ultrastructure of WNIN/GR-Ob and age-matched littermate lean rats were studied by microscopy and immunohistochemistry. The retinal transcriptome of WNIN/GR-Ob was compared with the respective lean controls and with the WNIN/Ob model using microarray analysis. Expression of selected retinal marker genes was studied via real-time PCR.ResultsProgressive loss of photoreceptor cells was observed in WNIN/GR-Ob rats with an onset as early as 3 months. Similarly, thinning of the inner nuclear layer was observed from 6 months in these rats. Immunohistochemical analysis showed decreased levels of rhodopsin and postsynaptic density protein-95 (PSD-95) proteins and increased levels of glial fibrillary acidic protein (GFAP), vascular endothelial growth factor (VEGF), and calretinin in WNIN/GR-Ob rats compared with the age-matched lean controls, further supporting cellular stress/damage and retinal degeneration. The retinal transcriptome analysis indicated altered expression profiles in both the WNIN/GR-Ob and WNIN/Ob rat models compared to their respective lean controls; these pathways are associated with activation of pathways like cellular oxidative stress response, inflammation, apoptosis, and phototransduction, although the changes were more prominent in WNIN/GR-Ob than in WNIN/Ob animals.ConclusionsWNIN/GR-Ob rats with added glucose intolerance developed retinal degeneration similar to the parent line WNIN/Ob. The severity of retinal degeneration was greater in WNIN/GR-Ob rats compared to WNIN/Ob, suggesting a possible role for IGT in this model. Hence, the WNIN/GR-Ob model could be a valuable tool for investigating the impact of MetS on retinal degeneration pathology
Live Demonstration: Multiplexing AER Asynchronous Channels over LVDS Links with Flow-Control and Clock- Correction for Scalable Neuromorphic Systems
In this live demonstration we exploit the use of a
serial link for fast asynchronous communication in massively
parallel processing platforms connected to a DVS for realtime
implementation of bio-inspired vision processing on
spiking neural networks
Structural network heterogeneities and network dynamics: a possible dynamical mechanism for hippocampal memory reactivation
The hippocampus has the capacity for reactivating recently acquired memories
[1-3] and it is hypothesized that one of the functions of sleep reactivation is
the facilitation of consolidation of novel memory traces [4-11]. The dynamic
and network processes underlying such a reactivation remain, however, unknown.
We show that such a reactivation characterized by local, self-sustained
activity of a network region may be an inherent property of the recurrent
excitatory-inhibitory network with a heterogeneous structure. The entry into
the reactivation phase is mediated through a physiologically feasible
regulation of global excitability and external input sources, while the
reactivated component of the network is formed through induced network
heterogeneities during learning. We show that structural changes needed for
robust reactivation of a given network region are well within known
physiological parameters [12,13].Comment: 16 pages, 5 figure
- …
