3,936 research outputs found
Fuzziness and Funds Allocation in Portfolio Optimization
Each individual investor is different, with different financial goals,
different levels of risk tolerance and different personal preferences. From the
point of view of investment management, these characteristics are often defined
as objectives and constraints. Objectives can be the type of return being
sought, while constraints include factors such as time horizon, how liquid the
investor is, any personal tax situation and how risk is handled. It's really a
balancing act between risk and return with each investor having unique
requirements, as well as a unique financial outlook - essentially a constrained
utility maximization objective. To analyze how well a customer fits into a
particular investor class, one investment house has even designed a structured
questionnaire with about two-dozen questions that each has to be answered with
values from 1 to 5. The questions range from personal background (age, marital
state, number of children, job type, education type, etc.) to what the customer
expects from an investment (capital protection, tax shelter, liquid assets,
etc.). A fuzzy logic system has been designed for the evaluation of the answers
to the above questions. We have investigated the notion of fuzziness with
respect to funds allocation.Comment: 21 page
A summary of the published data on host plants and morphology of immature stages of Australian jewel beetles (Coleoptera: Buprestidae) : with additional new records
A summary is given of the published host plant and descriptive immature stage morphology data for 671 species and 11 subspecies in 54 genera of Australian jewel beetles (Coleoptera: Buprestidae). New host data for 155 species and 3 subspecies in 17 genera including the first published data for 75 species are included
Large-N supersymmetric beta-functions
We present calculations of the leading and O(1/N) terms in a large-N
expansion of the \beta-functions for various supersymmetric theories: a
Wess-Zumino model, supersymmetric QED and a non-abelian supersymmetric gauge
theory. In all cases N is the number of a class of the chiral superfields in
the theory.Comment: 9 pages, tex, five figures. Uses harvmac and epsf. Revised to include
a discussion of higher loop DRED ambiguities. Some references added, and
notation clarifie
An estimate of the stratospheric contribution to springtime tropospheric ozone maxima using TOPSE measurements and beryllium-7 simulations
Measurements of tropospheric ozone (O3) between 30°N and 70°N show springtime maxima at remote locations. The contribution of seasonal changes in stratosphere–troposphere exchange (STE) to these maxima was investigated using measurements from the Tropospheric Ozone Production about the Spring Equinox Experiment (TOPSE) campaign and the beryllium-7 (7Be) distribution from a calculation driven by fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Comparison with TOPSE measurements revealed that upper tropospheric model-calculated 7Be mixing ratios were reasonable (a change from previous calculations) but that lower tropospheric mixing ratios were too low most likely due to an overestimation of scavenging. Temporal fluctuations were well captured although their amplitudes were often underestimated. Analysis of O3measurements indicated that O3 mixing ratios increased by 5–10% month−1 for θ \u3c 300 K (the underworld) and by 10–15% month−1 for θ \u3e 300 K (the tropospheric middleworld). 7Be mixing ratios decreased with time for θ \u3c 290 K and increased with time for θ \u3e 300 K. Model-calculated middleworld increases of 7Be were a factor of 2 less than measured increases. 7Be with a stratospheric source (strat-7Be) increased by 4.6–8.8% month−1 along TOPSE flight paths within the tropospheric middleworld. Increases in strat-7Be were not seen along TOPSE flight paths in the underworld. Assuming changes in tropospheric O3 with a stratospheric source are the same as changes in strat-7Be and that 50% of O3 in the region of interest is produced in the stratosphere, changes in STE explain 20–60% of O3 increases in the tropospheric middleworld and less than 33% of O3 increases in the underworld
Interpreting the Ionization Sequence in AGN Emission-Line Spectra
We investigate the physical cause of the great range in the ionization level
seen in the spectra of narrow lined active galactic nuclei (AGN). Mean field
independent component analysis identifies examples of individual SDSS galaxies
whose spectra are not dominated by emission due to star formation (SF), which
we designate as AGN. We assembled high S/N ratio composite spectra of a
sequence of these AGN defined by the ionization level of their narrow-line
regions (NLR), extending down to very low-ionization cases. We used a local
optimally emitting cloud (LOC) model to fit emission-line ratios in this AGN
sequence. These included the weak lines that can be measured only in the
co-added spectra, providing consistency checks on strong line diagnostics.
After integrating over a wide range of radii and densities our models indicate
that the radial extent of the NLR is the major parameter in determining the
position of high to moderate ionization AGN along our sequence, providing a
physical interpretation for their systematic variation. Higher ionization AGN
contain optimally emitting clouds that are more concentrated towards the
central continuum source than in lower ionization AGN. Our LOC models indicate
that for the objects that lie on our AGN sequence, the ionizing luminosity is
anticorrelated with the NLR ionization level, and hence anticorrelated with the
radial concentration and physical extent of the NLR. A possible interpretation
that deserves further exploration is that the ionization sequence might be an
age sequence where low ionization objects are older and have systematically
cleared out their central regions by radiation pressure. We consider that our
AGN sequence instead represents a mixing curve of SF and AGN spectra, but argue
that while many galaxies do have this type of composite spectra, our AGN
sequence appears to be a special set of objects with negligible SF excitation.Comment: 57 pages; 18 figures, accepted by MNRA
Classification and analysis of emission-line galaxies using mean field independent component analysis
We present an analysis of the optical spectra of narrow emission-line
galaxies, based on mean field independent component analysis (MFICA). Samples
of galaxies were drawn from the Sloan Digital Sky Survey (SDSS) and used to
generate compact sets of `continuum' and `emission-line' component spectra.
These components can be linearly combined to reconstruct the observed spectra
of a wider sample of galaxies. Only 10 components - five continuum and five
emission line - are required to produce accurate reconstructions of essentially
all narrow emission-line galaxies; the median absolute deviations of the
reconstructed emission-line fluxes, given the signal-to-noise ratio (S/N) of
the observed spectra, are 1.2-1.8 sigma for the strong lines. After applying
the MFICA components to a large sample of SDSS galaxies we identify the regions
of parameter space that correspond to pure star formation and pure active
galactic nucleus (AGN) emission-line spectra, and produce high S/N
reconstructions of these spectra.
The physical properties of the pure star formation and pure AGN spectra are
investigated by means of a series of photoionization models, exploiting the
faint emission lines that can be measured in the reconstructions. We are able
to recreate the emission line strengths of the most extreme AGN case by
assuming the central engine illuminates a large number of individual clouds
with radial distance and density distributions, f(r) ~ r^gamma and g(n) ~
n^beta, respectively. The best fit is obtained with gamma = -0.75 and beta =
-1.4. From the reconstructed star formation spectra we are able to estimate the
starburst ages. These preliminary investigations serve to demonstrate the
success of the MFICA-based technique in identifying distinct emission sources,
and its potential as a tool for the detailed analysis of the physical
properties of galaxies in large-scale surveys.Comment: MNRAS accepted. 29 pages, 24 figures, 3 table
Regulation of B cell fate by chronic activity of the IgE B cell receptor.
IgE can trigger potent allergic responses, yet the mechanisms regulating IgE production are poorly understood. Here we reveal that IgE+ B cells are constrained by chronic activity of the IgE B cell receptor (BCR). In the absence of cognate antigen, the IgE BCR promoted terminal differentiation of B cells into plasma cells (PCs) under cell culture conditions mimicking T cell help. This antigen-independent PC differentiation involved multiple IgE domains and Syk, CD19, BLNK, Btk, and IRF4. Disruption of BCR signaling in mice led to consistently exaggerated IgE+ germinal center (GC) B cell but variably increased PC responses. We were unable to confirm reports that the IgE BCR directly promoted intrinsic apoptosis. Instead, IgE+ GC B cells exhibited poor antigen presentation and prolonged cell cycles, suggesting reduced competition for T cell help. We propose that chronic BCR activity and access to T cell help play critical roles in regulating IgE responses
- …
