8 research outputs found
Citizen science breathes new life into participatory agricultural research : A review
Participatory research can improve the efficiency, effectiveness, and scope of research processes, and foster social inclusion, empowerment and sustainability. Yet despite four decades of agricultural research institutions exploring and developing methods for participatory research, it has never become mainstream in the agricultural technology development cycle. Citizen science promises an innovative approach to participation in research, using the unique facilities of new digital technologies, but its potential in agricultural research participation has not been systematically probed. To this end, we conducted a critical literature review. We found that citizen science opens up four opportunities for creatively reshaping research: i) new possibilities for interdisciplinary collaboration, ii) rethinking configurations of socio-computational systems, iii) research on democratization of science more broadly, and iv) new accountabilities. Citizen science also brings a fresh perspective on the barriers to institutionalizing participation in the agricultural sciences. Specifically, we show how citizen science can reconfigure cost-motivation-accountability combinations using digital tools, open up a larger conceptual space of experimentation, and stimulate new collaborations. With appropriate and persistent institutional support and investment, citizen science can therefore have a lasting impact on how agricultural science engages with farming communities and wider society, and more fully realize the promises of participation
Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice
AbstractEnteroendocrine L-cell derived peptide hormones, notably glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2), have become important targets in the treatment of type 2 diabetes, obesity and intestinal diseases. As gut microbial imbalances and maladaptive host responses have been implicated in the pathology of obesity and diabetes, this study aimed to determine the effects of pharmacologically stimulated GLP-1 and GLP-2 receptor function on the gut microbiome composition in diet-induced obese (DIO) mice. DIO mice received treatment with a selective GLP-1 receptor agonist (liraglutide, 0.2 mg/kg, BID) or dual GLP-1/GLP-2 receptor agonist (GUB09–145, 0.04 mg/kg, BID) for 4 weeks. Both compounds suppressed caloric intake, promoted a marked weight loss, improved glucose tolerance and reduced plasma cholesterol levels. 16S rDNA sequencing and deep-sequencing shotgun metagenomics was applied for comprehensive within-subject profiling of changes in gut microbiome signatures. Compared to baseline, DIO mice assumed phylogenetically similar gut bacterial compositional changes following liraglutide and GUB09-145 treatment, characterized by discrete shifts in low-abundant species and related bacterial metabolic pathways. The microbiome alterations may potentially associate to the converging biological actions of GLP-1 and GLP-2 receptor signaling on caloric intake, glucose metabolism and lipid handling.</jats:p
