20,285 research outputs found

    CIRCE Version 1.0: Beam Spectra for Linear Collider Physics

    Full text link
    I describe parameterizations of realistic e±e^\pm- and γ\gamma-beam spectra at future linear e+ee^+e^--colliders. Emphasis is put on simplicity and reproducibility of the parameterizations, supporting reproducible physics simulations. The parameterizations are implemented in a library of distribution functions and event generators.Comment: 26 pages, LaTeX (using amsmath.sty), PostScript figures included, paper saving version formatted for A4 available from ftp://crunch.ikp.physik.th-darmstadt.de/pub/preprints/IKDA-96-13.ps.g

    A Reduction of the Elastic Net to Support Vector Machines with an Application to GPU Computing

    Full text link
    The past years have witnessed many dedicated open-source projects that built and maintain implementations of Support Vector Machines (SVM), parallelized for GPU, multi-core CPUs and distributed systems. Up to this point, no comparable effort has been made to parallelize the Elastic Net, despite its popularity in many high impact applications, including genetics, neuroscience and systems biology. The first contribution in this paper is of theoretical nature. We establish a tight link between two seemingly different algorithms and prove that Elastic Net regression can be reduced to SVM with squared hinge loss classification. Our second contribution is to derive a practical algorithm based on this reduction. The reduction enables us to utilize prior efforts in speeding up and parallelizing SVMs to obtain a highly optimized and parallel solver for the Elastic Net and Lasso. With a simple wrapper, consisting of only 11 lines of MATLAB code, we obtain an Elastic Net implementation that naturally utilizes GPU and multi-core CPUs. We demonstrate on twelve real world data sets, that our algorithm yields identical results as the popular (and highly optimized) glmnet implementation but is one or several orders of magnitude faster.Comment: 10 page

    HaTS: Hardware-Assisted Transaction Scheduler

    Get PDF
    In this paper we present HaTS, a Hardware-assisted Transaction Scheduler. HaTS improves performance of concurrent applications by classifying the executions of their atomic blocks (or in-memory transactions) into scheduling queues, according to their so called conflict indicators. The goal is to group those transactions that are conflicting while letting non-conflicting transactions proceed in parallel. Two core innovations characterize HaTS. First, HaTS does not assume the availability of precise information associated with incoming transactions in order to proceed with the classification. It relaxes this assumption by exploiting the inherent conflict resolution provided by Hardware Transactional Memory (HTM). Second, HaTS dynamically adjusts the number of the scheduling queues in order to capture the actual application contention level. Performance results using the STAMP benchmark suite show up to 2x improvement over state-of-the-art HTM-based scheduling techniques

    Density-Dependent Response of an Ultracold Plasma to Few-Cycle Radio-Frequency Pulses

    Full text link
    Ultracold neutral plasmas exhibit a density-dependent resonant response to applied radio-frequency (RF) fields in the frequency range of several MHz to hundreds of MHz for achievable densities. We have conducted measurements where short bursts of RF were applied to these plasmas, with pulse durations as short as two cycles. We still observed a density-dependent resonant response to these short pulses. However, the too rapid timescale of the response, the dependence of the response on the sign of the driving field, the response as the number of pulses was increased, and the difference in plasma response to radial and axially applied RF fields are inconsistent with the plasma response being due to local resonant heating of electrons in the plasma. Instead, our results are consistent with rapid energy transfer from collective motion of the entire electron cloud to electrons in high-energy orbits. In addition to providing a potentially more robust way to measure ultracold neutral plasma densities, these measurements demonstrate the importance of collective motion in the energy transport in these systems.Comment: 5 pages, 4 figure

    Does SN 1987A contain a rapidly vibrating neutron star

    Get PDF
    If the recently reported 0.5 ms-period pulsed optical signal from the direction of Supernova 1987A originated in a young neutron star, its interpretation as a rotational period has difficulties. The surface magnetic field would have to be much lower than expected, and the high rotation rate may rule out preferred nuclear equations of state. It is pointed out here that a remnant radial vibration of a neutron star, excited in the supernova event, may survive for several years with about the observed (gravitationally redshifted) period. Heavy ions at the low-density stellar surface, periodically shocked by the vibration, may efficiently produce narrow pulses of optical cyclotron radiation in a surface field of about a trillion gauss
    corecore