7,493 research outputs found
Near-ultraviolet signatures of environment-driven galaxy quenching in Sloan Digital Sky Survey groups
© 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. We have investigated the effect of group environment on residual star formation in galaxies, using Galaxy Evolution Explorer near-ultraviolet (NUV) galaxy photometry with the Sloan Digital Sky Survey group catalogue of Yang et al. We compared the (NUV - r) colours of grouped and non-grouped galaxies, and find a significant increase in the fraction of red sequence galaxies with blue (NUV - r) colours outside of groups. When comparing galaxies in mass-matched samples of satellite (non-central), and non-grouped galaxies, we found a > 4σ difference in the distribution of (NUV - r) colours, and an (NUV - r) blue fraction > 3σ higher outside groups. A comparison of satellite and non-grouped samples has found the NUV fraction is a factor of ~2 lower for satellite galaxies between 10 10.5 and 10 10.7 M ⊙ , showing that higher mass galaxies are more likely to have residual star formation when not influenced by a group potential. There was a higher (NUV - r) blue fraction of galaxies with lower Sérsic indices (n < 3) outside of groups, not seen in the satellite sample. We have used stellar population models of Bruzual & Charlot with multiple burst, or exponentially declining star formation histories to find that many of the (NUV - r) blue non-grouped galaxies can be explained by a slow (~2 Gyr) decay of star formation, compared to the satellite galaxies. We suggest that taken together, the difference in (NUV - r) colours between samples can be explained by a population of secularly evolving, non-grouped galaxies, where star formation declines slowly. This slow channel is less prevalent in group environments where more rapid quenching can occur
Assessment of Current Estimates of Global and Regional Mean Sea Level from the TOPEX/Poseidon, Jason-1, and OSTM 17-Year Record
The science value of satellite altimeter observations has grown dramatically over time as enabling models and technologies have increased the value of data acquired on both past and present missions. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global sea level rate at an accuracy of a few tenths of a mm/yr. The measurement of mean sea-level change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical to satellite altimeter measurement accuracy. The orbit defines the altimeter reference frame, and orbit error directly affects the altimeter measurement. Orbit error remains a major component in the error budget of all past and present altimeter missions. For example, inconsistencies in the International Terrestrial Reference Frame (ITRF) used to produce the precision orbits at different times cause systematic inconsistencies to appear in the multimission time-frame between TOPEX and Jason-1, and can affect the intermission calibration of these data. In an effort to adhere to cross mission consistency, we have generated the full time series of orbits for TOPEX/Poseidon (TP), Jason-1, and OSTM based on recent improvements in the satellite force models, reference systems, and modeling strategies. The recent release of the entire revised Jason-1 Geophysical Data Records, and recalibration of the microwave radiometer correction also require the further re-examination of inter-mission consistency issues. Here we present an assessment of these recent improvements to the accuracy of the 17 -year sea surface height time series, and evaluate the subsequent impact on global and regional mean sea level estimates
Quasi-Elastic Scattering in the Inclusive (He, t) Reaction
The triton energy spectra of the charge-exchange C(He,t) reaction
at 2 GeV beam energy are analyzed in the quasi-elastic nucleon knock-out
region. Considering that this region is mainly populated by the charge-exchange
of a proton in He with a neutron in the target nucleus and the final proton
going in the continuum, the cross-sections are written in the distorted-wave
impulse approximation. The t-matrix for the elementary exchange process is
constructed in the DWBA, using one pion- plus rho-exchange potential for the
spin-isospin nucleon- nucleon potential. This t-matrix reproduces the
experimental data on the elementary pn np process. The calculated
cross-sections for the C(He,t) reaction at to triton
emission angle are compared with the corresponding experimental data, and are
found in reasonable overall accord.Comment: 19 pages, latex, 11 postscript figures available at
[email protected], submitted to Phy.Rev.
The a-theorem and conformal symmetry breaking in holographic RG flows
We study holographic models describing an RG flow between two fixed points
driven by a relevant scalar operator. We show how to introduce a spurion field
to restore Weyl invariance and compute the anomalous contribution to the
generating functional in even dimensional theories. We find that the
coefficient of the anomalous term is proportional to the difference of the
conformal anomalies of the UV and IR fixed points, as expected from anomaly
matching arguments in field theory. For any even dimensions the coefficient is
positive as implied by the holographic a-theorem. For flows corresponding to
spontaneous breaking of conformal invariance, we also compute the two-point
functions of the energy-momentum tensor and the scalar operator and identify
the dilaton mode. Surprisingly we find that in the simplest models with just
one scalar field there is no dilaton pole in the two-point function of the
scalar operator but a stronger singularity. We discuss the possible
implications.Comment: 50 pages. v2: minor changes, added references, extended discussion.
v3: we have clarified some of the calculations and assumptions, results
unchanged. v4: published version in JHE
Charging Ultrasmall Tunnel Junctions in Electromagnetic Environment
We have investigated the quantum admittance of an ultrasmall tunnel junction
with arbitrary tunneling strength under an electromagnetic environment. Using
the functional integral approach a close analytical expression of the quantum
admittance is derived for a general electromagnetic environment. We then
consider a specific controllable environment where a resistance is connected in
series with the tunneling junction, for which we derived the dc quantum
conductance from the zero frequency limit of the imaginary part of the quantum
admittance. For such electromagnetic environment the dc conductance has been
investigated in recent experiments, and our numerical results agree
quantitatively very well with the measurements. Our complete numerical results
for the entire range of junction conductance and electromagnetic environmental
conductance confirmed the few existing theoretical conclusions.Comment: 7 pages, 3 ps-figure
Bose-Einstein Correlations of Three Charged Pions in Hadronic Z^0 Decays
Bose-Einstein Correlations (BEC) of three identical charged pions were
studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP.
The genuine three-pion correlations, corrected for the Coulomb effect, were
separated from the known two-pion correlations by a new subtraction procedure.
A significant genuine three-pion BEC enhancement near threshold was observed
having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029
(syst.) fm and a strength of \lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041
(syst.). The Coulomb correction was found to increase the \lambda_3 value by
\~9% and to reduce r_3 by ~6%. The measured \lambda_3 corresponds to a value of
0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the
three-pion sample purity. A relation between the two-pion and the three-pion
source parameters is discussed.Comment: 19 pages, LaTeX, 5 eps figures included, accepted by Eur. Phys. J.
W+W- production and triple gauge boson couplings at LEP energies up to 183 GeV
A study of W-pair production in e+e- annihilations at Lep2 is presented,
based on 877 W+W- candidates corresponding to an integrated luminosity of 57
pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the
W-pair production and decay, as well as their branching fractions, are
described by the Standard Model, the W-pair production cross-section is
measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton
universality and combining with our results from lower centre-of-mass energies,
the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +-
0.5 (syst.)%. The number of W-pair candidates and the angular distributions for
each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge
boson couplings. After combining these values with our results from lower
centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37,
D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include
both statistical and systematic uncertainties and each coupling is determined
setting the other two couplings to the Standard Model value. The fraction of W
bosons produced with a longitudinal polarisation is measured to be
0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with
the Standard Model expectations.Comment: 48 pages, LaTeX, including 13 eps or ps figures, submitted to
European Physical Journal
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
Quantum physics in inertial and gravitational fields
Covariant generalizations of well-known wave equations predict the existence
of inertial-gravitational effects for a variety of quantum systems that range
from Bose-Einstein condensates to particles in accelerators. Additional effects
arise in models that incorporate Born reciprocity principle and the notion of a
maximal acceleration. Some specific examples are discussed in detail.Comment: 25 pages,1 figure,to appear in "Relativity in Rotating Frame
Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation
Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas
- …
