699 research outputs found

    Fact and fiction in housing research: utilizing the creative imagination

    Get PDF
    As much of our conceptual framework is informed by the experience of the imagination, there is much to be learnt from a study of various creative forms. Narrative fiction can be one such form, allowing us to gain a useful insight into complex features of social life. The purpose of this article is to investigate the treatment of housing issues in contemporary literature in order to gain insights into attitudes, experiences and interpretations from the perspective of a broad cultural milieu. Discussions of professionalism, housing tenure and homelessness have tended to be conducted within a narrow framework and adopted orthodox modes of evaluation. Consequently, the neglect of housing within a wider cultural context has reinforced the isolation of housing issues. The article argues that although discussions of housing and housing policy have been seriously limited within the contemporary novel, there are a number of key insights that can be gained from a discussion of issues within a fictional setting

    Speciation with gene flow in a narrow endemic West Virginia cave salamander (\u3ci\u3eGyrinophilus subterraneus\u3c/i\u3e)

    Get PDF
    Due to their limited geographic distributions and specialized ecologies, cave species are often highly endemic and can be especially vulnerable to habitat degradation within and surrounding the cave systems they inhabit. We investigated the evolutionary history of the West Virginia Spring Salamander (Gyrinophilus subterraneus), estimated the population trend from historic and current survey data, and assessed the current potential for water quality threats to the cave habitat. Our genomic data (mtDNA sequence and ddRADseq-derived SNPs) reveal two, distinct evolutionary lineages within General Davis Cave corresponding to G. subterraneus and its widely distributed sister species, Gyrinophilus porphyriticus, that are also differentiable based on morphological traits. Genomic models of evolutionary history strongly support asymmetric and continuous gene flow between the two lineages, and hybrid classification analyses identify only parental and first generation cross (F1) progeny. Collectively, these results point to a rare case of sympatric speciation occurring within the cave, leading to strong support for continuing to recognize G. subterraneus as a distinct and unique species. Due to its specialized habitat requirements, the complete distribution of G. subterraneus is unresolved, but using survey data in its type locality (and currently the only known occupied site), we find that the population within General Davis Cave has possibly declined over the last 45 years. Finally, our measures of cave and surface stream water quality did not reveal evidence of water quality impairment and provide important baselines for future monitoring. In addition, our unexpected finding of a hybrid zone and partial reproductive isolation between G. subterraneus and G. porphyriticus warrants further attention to better understand the evolutionary and conservation implications of occasional hybridization between the species

    The Feasibility, Tolerability, Safety, and Accuracy of Low-radiation Dynamic Computed Tomography Myocardial Perfusion Imaging With Regadenoson Compared With Single-photon Emission Computed Tomography

    Get PDF
    Objectives: Computed tomography (CT) myocardial perfusion imaging (CT-MPI) with hyperemia induced by regadenoson was evaluated for the detection of myocardial ischemia, safety, relative radiation exposure, and patient experience compared with single-photon emission computed tomography (SPECT) imaging. Materials and Methods: Twenty-four patients (66.5 y, 29% male) who had undergone clinically indicated SPECT imaging and provided written informed consent were included in this phase II, IRB-approved, and FDA-approved clinical trial. All patients underwent coronary CT angiography and CT-MPI with hyperemia induced by the intravenous administration of regadenoson (0.4 mg/5 mL). Patient experience and findings on CT-MPI images were compared to SPECT imaging. Results: Patient experience and safety were similar between CT-MPI and SPECT procedures and no serious adverse events due to the administration of regadenoson occurred. SPECT resulted in a higher number of mild adverse events than CT-MPI. Patient radiation exposure was similar during the combined coronary computed tomography angiography and CT-MPI (4.4 [2.7] mSv) and SPECT imaging (5.6 [1.7] mSv) (P-value 0.401) procedures. Using SPECT as the reference standard, CT-MPI analysis showed a sensitivity of 58.3% (95% confidence interval [CI]: 27.7-84.8), a specificity of 100% (95% CI: 73.5-100), and an accuracy of 79.1% (95% CI: 57.9-92.87). Low apparent sensitivity occurred when the SPECT defects were small and highly suspicious for artifacts. Conclusions: This study demonstrated that CT-MPI is safe, well tolerated, and can be performed with comparable radiation exposure to SPECT. CT-MPI has the benefit of providing both complete anatomic coronary evaluation and assessment of myocardial perfusion

    Paleo-geohydrology of Lake Chilwa, Malawi is the source of localised groundwater salinity and rural water supply challenges

    Get PDF
    Meeting long-term rural community water supply needs requires diligent geohydrological conceptualisation. Study of Malawi’s Lake Chilwa Basin, including sampling of 330 water points in Phalombe District, enabled assessment of groundwater quality influence upon supply. The control of larger Lake Chilwa paleo-environments on current Basin groundwater quality is demonstrated. Lacustrine sediment deposition forming high-level deposits under open lake conditions and terrace deposits under open and closed lake conditions significantly control the groundwater major-ion quality and salinity now observed. Paleo-lake extent marks the transition between low-TDS (total dissolved solids) groundwater suitable for water supply at higher elevations and high-TDS brackish groundwater in areas overlain by lacustrine deposits closer to the current lake level. Low-TDS groundwater is limited to mid-to-low reach influent leakage of rivers incising terraces. Permeable fluvial deposits within the deeper paleo-river channel may possibly provide low-TDS water. The conceptual model, whereby paleo-lake controls groundwater salinity, provides science-based evidence to address policy to manage the significant water point functionality concerns quantified at the district and river basin scales. Targeting of the low-TDS groundwater alongside improved use of upland low-TDS stream/river sources with fewer, but larger capacity, and better maintained gravity-fed supply schemes are recommended. This study hence shows the value of paleo-geohydrology interpretation of the lake–groundwater system conceptualisation to inform Sustainable Development Goal 6 (SDG 6.5.1)—integrated water resources management policy for rural water supply

    Performance and calibration of quark/gluon-jet taggers using 140 fb⁻¹ of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s=13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points

    Azimuthal Angle Correlations of Muons Produced via Heavy-Flavor Decays in 5.02 TeV Pb + Pb and pp Collisions with the ATLAS Detector

    Get PDF

    Determination of the Relative Sign of the Higgs Boson Couplings to W and Z Bosons Using WH Production via Vector-Boson Fusion with the ATLAS Detector

    Get PDF
    The associated production of Higgs and W bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to W and Z bosons. In this Letter, two searches for this process are presented, using 140 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the W and Z bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of b quarks and W boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond 5σ, and the observed (expected) upper limit set on the cross section for vector-boson fusion WH production is 9.0 (8.7) times the standard model value at 95% confidence level

    Measurement of the Z boson invisible width at s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of the invisible width of the Z boson using events with jets and missing transverse momentum is presented using 37 fb−1 of 13 TeV proton–proton data collected by the ATLAS detector in 2015 and 2016. The ratio of Z→inv to Z→ll events, where inv refers to non-detected particles and l is either an electron or a muon, is measured and corrected for detector effects. Events with at least one energetic central jet with pT≥110 GeV are selected for both the Z→inv and Z→ll final states to obtain a similar phase space in the ratio. The invisible width is measured to be 506±2(stat.)±12(syst.) MeV and is the single most precise recoil-based measurement. The result is in agreement with the most precise determination from LEP and the Standard Model prediction based on three neutrino generations
    corecore