26,323 research outputs found
The EET Horizontal Tails Investigation and the EET Lateral Controls Investigation
In the energy efficient transport (EET) Horizontal Tails Investigation, aerodynamic data were measured for five different horizontal tails on a full span model with a wide body fuselage. Three of the horizontal tails were low tail configurations and two were T tail configurations. All tails were tested in conjunction with two wings, a current wide body wing and a high aspect ratio supercritical wing. Local downwash angles and dynamic pressures in the vicinity of the tails were measured using a yaw head rake. The results provide a comparison of the aerodynamic characteristics of the two wing configurations at trimmed conditions for Mach numbers between 0.60 and 0.90. In the EET Lateral Controls Investigation, the control effectiveness of a conventional set of lateral controls was measured over a Mach number range from 0.60 to 0.90 on a high aspect ratio supercritical wing semispan model. The conventional controls included a high speed aileron, a low speed aileron, and six spoiler segments. The wing was designed so that the last 25% of the chord is removable to facilitate testing of various control systems. The current status and an indication of the data obtained in these investigations are presented
Toward the next generation of research into small area effects on health : a synthesis of multilevel investigations published since July 1998.
To map out area effects on health research, this study had the following aims: (1) to inventory multilevel investigations of area effects on self rated health, cardiovascular diseases and risk factors, and mortality among adults; (2) to describe and critically discuss methodological approaches employed and results observed; and (3) to formulate selected recommendations for advancing the study of area effects on health. Overall, 86 studies were inventoried. Although several innovative methodological approaches and analytical designs were found, small areas are most often operationalised using administrative and statistical spatial units. Most studies used indicators of area socioeconomic status derived from censuses, and few provided information on the validity and reliability of measures of exposures. A consistent finding was that a significant portion of the variation in health is associated with area context independently of individual characteristics. Area effects on health, although significant in most studies, often depend on the health outcome studied, the measure of area exposure used, and the spatial scale at which associations are examined
Magnetic structure of free cobalt clusters studied with Stern-Gerlach deflection experiments
We have studied the magnetic properties of free cobalt clusters in two
semi-independent Stern-Gerlach deflection experiments at temperatures between
60 and 307 K. We find that clusters consisting of 13 to 200 cobalt atoms
exhibit behavior that is entirely consistent with superparamagnetism, though
complicated by finite-system fluctuations in cluster temperature. By fitting
the data to the Langevin function, we report magnetic moments per atom for each
cobalt cluster size and compare the results of our two measurements and all
those performed previously. In addition to a gradual decrease in moment per
atom with increasing size, there are oscillations that appear to be caused by
geometrical shell structure. We discuss our observations in light of the two
competing models for Langevin-like magnetization behavior in free clusters,
superparamagnetism and adiabatic magnetization, and conclude that the evidence
strongly supports the superparamagnetic model
A Monte Carlo Method for Modeling Thermal Damping: Beyond the Brownian-Motion Master Equation
The "standard" Brownian motion master equation, used to describe thermal
damping, is not completely positive, and does not admit a Monte Carlo method,
important in numerical simulations. To eliminate both these problems one must
add a term that generates additional position diffusion. He we show that one
can obtain a completely positive simple quantum Brownian motion, efficiently
solvable, without any extra diffusion. This is achieved by using a stochastic
Schroedinger equation (SSE), closely analogous to Langevin's equation, that has
no equivalent Markovian master equation. Considering a specific example, we
show that this SSE is sensitive to nonlinearities in situations in which the
master equation is not, and may therefore be a better model of damping for
nonlinear systems.Comment: 6 pages, revtex4. v2: numerical results for a nonlinear syste
Mutant and chimeric recobinant plasminogen activatorsproduction in eukaryotic cellsand preliminary characterization
Mutant urokinase-type plasminogen activator (u-PA) genes and hybrid genes between tissue-type plasminogen activator (t-PA) and u-PA have been designed to direct the synthesis of new plasminogen activators and to investigate the structure-function relationship in these molecules. The following classes of constructs were made starting from cDNA encoding human t-PA or u-PA: 1) u-PA mutants in which the Arg156 and Lys158 were substituted with threonine, thus preventing cleavage by thrombin and plasmin; 2) hybrid molecules in which the NH2-terminal regions of t-PA (amino acid residues 1-67, 1-262, or 1-313) were fused with the COOH-terminal region of u-PA (amino acids 136-411, 139-411, or 195-411, respectively); and 3) a hybrid molecule in which the second kringle of t-PA (amino acids 173-262) was inserted between amino acids 130 and 139 of u-PA. In all cases but one, the recombinant proteins, produced by transfected eukaryotic cells, were efficiently secreted in the culture medium. The translation products have been tested for their ability to activate plasminogen after in situ binding to an insolubilized monoclonal antibody directed against urokinase. All recombinant enzymes were shown to be active, except those in which Lys158 of u-PA was substituted with threonine. Recombination of structural regions derived from t-PA, such as the finger, the kringle 2, or most of the A-chain sequences, with the protease part or the complete u-PA molecule did not impair the catalytic activity of the hybrid polypeptides. This observation supports the hypothesis that structural domains in t-PA and u-PA fold independently from one to another
Twisting 2-cocycles for the construction of new non-standard quantum groups
We introduce a new class of 2-cocycles defined explicitly on the generators
of certain multiparameter standard quantum groups. These allow us, through the
process of twisting the familiar standard quantum groups, to generate new as
well as previously known examples of non-standard quantum groups. In particular
we are able to construct generalisations of both the Cremmer-Gervais
deformation of SL(3) and the so called esoteric quantum groups of Fronsdal and
Galindo in an explicit and straightforward manner.Comment: 21 pages, AMSLaTeX, expanded introduction and a few other minor
corrections, to appear in JM
Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe Lattices
We show that negative of the number of floppy modes behaves as a free energy
for both connectivity and rigidity percolation, and we illustrate this result
using Bethe lattices. The rigidity transition on Bethe lattices is found to be
first order at a bond concentration close to that predicted by Maxwell
constraint counting. We calculate the probability of a bond being on the
infinite cluster and also on the overconstrained part of the infinite cluster,
and show how a specific heat can be defined as the second derivative of the
free energy. We demonstrate that the Bethe lattice solution is equivalent to
that of the random bond model, where points are joined randomly (with equal
probability at all length scales) to have a given coordination, and then
subsequently bonds are randomly removed.Comment: RevTeX 11 pages + epsfig embedded figures. Submitted to Phys. Rev.
Infinite-cluster geometry in central-force networks
We show that the infinite percolating cluster (with density P_inf) of
central-force networks is composed of: a fractal stress-bearing backbone (Pb)
and; rigid but unstressed ``dangling ends'' which occupy a finite
volume-fraction of the lattice (Pd). Near the rigidity threshold pc, there is
then a first-order transition in P_inf = Pd + Pb, while Pb is second-order with
exponent Beta'. A new mean field theory shows Beta'(mf)=1/2, while simulations
of triangular lattices give Beta'_tr = 0.255 +/- 0.03.Comment: 6 pages, 4 figures, uses epsfig. Accepted for publication in Physical
Review Letter
Algorithms for 3D rigidity analysis and a first order percolation transition
A fast computer algorithm, the pebble game, has been used successfully to
study rigidity percolation on 2D elastic networks, as well as on a special
class of 3D networks, the bond-bending networks. Application of the pebble game
approach to general 3D networks has been hindered by the fact that the
underlying mathematical theory is, strictly speaking, invalid in this case. We
construct an approximate pebble game algorithm for general 3D networks, as well
as a slower but exact algorithm, the relaxation algorithm, that we use for
testing the new pebble game. Based on the results of these tests and additional
considerations, we argue that in the particular case of randomly diluted
central-force networks on BCC and FCC lattices, the pebble game is essentially
exact. Using the pebble game, we observe an extremely sharp jump in the largest
rigid cluster size in bond-diluted central-force networks in 3D, with the
percolating cluster appearing and taking up most of the network after a single
bond addition. This strongly suggests a first order rigidity percolation
transition, which is in contrast to the second order transitions found
previously for the 2D central-force and 3D bond-bending networks. While a first
order rigidity transition has been observed for Bethe lattices and networks
with ``chemical order'', this is the first time it has been seen for a regular
randomly diluted network. In the case of site dilution, the transition is also
first order for BCC, but results for FCC suggest a second order transition.
Even in bond-diluted lattices, while the transition appears massively first
order in the order parameter (the percolating cluster size), it is continuous
in the elastic moduli. This, and the apparent non-universality, make this phase
transition highly unusual.Comment: 28 pages, 19 figure
Generic morphologies of viscoelastic dewetting fronts
A simple model is put forward which accounts for the occurrence of certain
generic dewetting morphologies in thin liquid coatings. It demonstrates that by
taking into account the elastic properties of the coating, a morphological
phase diagram may be derived which describes the observed structures of
dewetting fronts. It is demonstrated that dewetting morphologies may also serve
to determine nanoscale rheological properties of liquids.Comment: 4 pages, 2 figure
- …
