4,584 research outputs found
On coalgebras with internal moves
In the first part of the paper we recall the coalgebraic approach to handling
the so-called invisible transitions that appear in different state-based
systems semantics. We claim that these transitions are always part of the unit
of a certain monad. Hence, coalgebras with internal moves are exactly
coalgebras over a monadic type. The rest of the paper is devoted to supporting
our claim by studying two important behavioural equivalences for state-based
systems with internal moves, namely: weak bisimulation and trace semantics.
We continue our research on weak bisimulations for coalgebras over order
enriched monads. The key notions used in this paper and proposed by us in our
previous work are the notions of an order saturation monad and a saturator. A
saturator operator can be intuitively understood as a reflexive, transitive
closure operator. There are two approaches towards defining saturators for
coalgebras with internal moves. Here, we give necessary conditions for them to
yield the same notion of weak bisimulation.
Finally, we propose a definition of trace semantics for coalgebras with
silent moves via a uniform fixed point operator. We compare strong and weak
bisimilation together with trace semantics for coalgebras with internal steps.Comment: Article: 23 pages, Appendix: 3 page
Theories of behaviour change synthesised into a set of theoretical groupings: Introducing a thematic series on the Theoretical Domains Framework
Behaviour change is key to increasing the uptake of evidence into healthcare practice. Designing behaviour-change interventions first requires problem analysis, ideally informed by theory. Yet the large number of partly overlapping theories of behaviour makes it difficult to select the most appropriate theory. The need for an overarching theoretical framework of behaviour change was addressed in research in which 128 explanatory constructs from 33 theories of behaviour were identified and grouped. The resulting Theoretical Domains Framework (TDF) appears to be a helpful basis for investigating implementation problems. Research groups in several countries have conducted TDF-based studies. It seems timely to bring together the experience of these teams in a thematic series to demonstrate further applications and to report key developments. This overview article describes the TDF, provides a brief critique of the framework, and introduces this thematic series.
In a brief review to assess the extent of TDF-based research, we identified 133 papers that cite the framework. Of these, 17 used the TDF as the basis for empirical studies to explore health professionals’ behaviour. The identified papers provide evidence of the impact of the TDF on implementation research. Two major strengths of the framework are its theoretical coverage and its capacity to elicit beliefs that could signify key mediators of behaviour change. The TDF provides a useful conceptual basis for assessing implementation problems, designing interventions to enhance healthcare practice, and understanding behaviour-change processes. We discuss limitations and research challenges and introduce papers in this series
Predictive feedback control and Fitts' law
Fitts’ law is a well established empirical formula, known for encapsulating the “speed-accuracy trade-off”. For discrete, manual movements from a starting location to a target, Fitts’ law relates movement duration to the distance moved and target size. The widespread empirical success of the formula is suggestive of underlying principles of human movement control. There have been previous attempts to relate Fitts’ law to engineering-type control hypotheses and it has been shown that the law is exactly consistent with the closed-loop step-response of a time-delayed, first-order system. Assuming only the operation of closed-loop feedback, either continuous or intermittent, this paper asks whether such feedback should be predictive or not predictive to be consistent with Fitts law. Since Fitts’ law is equivalent to a time delay separated from a first-order system, known control theory implies that the controller must be predictive. A predictive controller moves the time-delay outside the feedback loop such that the closed-loop response can be separated into a time delay and rational function whereas a non- predictive controller retains a state delay within feedback loop which is not consistent with Fitts’ law. Using sufficient parameters, a high-order non-predictive controller could approximately reproduce Fitts’ law. However, such high-order, “non-parametric” controllers are essentially empirical in nature, without physical meaning, and therefore are conceptually inferior to the predictive controller. It is a new insight that using closed-loop feedback, prediction is required to physically explain Fitts’ law. The implication is that prediction is an inherent part of the “speed-accuracy trade-off”
Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis
Rapid antibiotic susceptibility testing of Mycobacterium tuberculosis is of paramount importance as multiple- and extensively- drug resistant strains of M. tuberculosis emerge and spread. We describe here a virus-based assay in which fluoromycobacteriophages are used to deliver a GFP or ZsYellow fluorescent marker gene to M. tuberculosis, which can then be monitored by fluorescent detection approaches including fluorescent microscopy and flow cytometry. Pre-clinical evaluations show that addition of either Rifampicin or Streptomycin at the time of phage addition obliterates fluorescence in susceptible cells but not in isogenic resistant bacteria enabling drug sensitivity determination in less than 24 hours. Detection requires no substrate addition, fewer than 100 cells can be identified, and resistant bacteria can be detected within mixed populations. Fluorescence withstands fixation by paraformaldehyde providing enhanced biosafety for testing MDR-TB and XDR-TB infections. © 2009 Piuri et al
Size Dependence of Metal-Insulator Transition in Stoichiometric Fe3O4 Nanocrystals
Magnetite (Fe3O4) is one of the most actively studied materials with a famous
metal-insulator transition (MIT), so-called the Verwey transition at around 123
K. Despite the recent progress in synthesis and characterization of Fe3O4
nanocrystals (NCs), it is still an open question how the Verwey transition
changes on a nanometer scale. We herein report the systematic studies on size
dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have
successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes
ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey
transition when they are characterized by conductance, magnetization, cryo-XRD,
and heat capacity measurements. The Verwey transition is weakly size-dependent
and becomes suppressed in NCs smaller than 20 nm before disappearing completely
for less than 6 nm, which is a clear, yet highly interesting indication of a
size effect of this well-known phenomena. Our current work will shed new light
on this ages-old problem of Verwey transition.Comment: 18 pages, 4 figures, Nano Letters (accepted
Lactate signalling regulates fungal β-glucan masking and immune evasion
AJPB: This work was supported by the European Research Council (STRIFE, ERC- 2009-AdG-249793), The UK Medical Research Council (MR/M026663/1), the UK Biotechnology and Biological Research Council (BB/K017365/1), the Wellcome Trust (080088; 097377). ERB: This work was supported by the UK Biotechnology and Biological Research Council (BB/M014525/1). GMA: Supported by the CNPq-Brazil (Science without Borders fellowship 202976/2014-9). GDB: Wellcome Trust (102705). CAM: This work was supported by the UK Medical Research Council (G0400284). DMM: This work was supported by UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/K000306/1). NARG/JW: Wellcome Trust (086827, 075470,101873) and Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377). ALL: This work was supported by the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1).Peer reviewedPostprin
Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria
The similarity in the genetic regulation of
arthropod and vertebrate appendage formation has been
interpreted as the product of a plesiomorphic gene
network that was primitively involved in bilaterian
appendage development and co-opted to build appendages
(in modern phyla) that are not historically related
as structures. Data from lophotrochozoans are needed to
clarify the pervasiveness of plesiomorphic appendage forming
mechanisms. We assayed the expression of three
arthropod and vertebrate limb gene orthologs, Distal-less
(Dll), dachshund (dac), and optomotor blind (omb), in
direct-developing juveniles of the polychaete Neanthes
arenaceodentata. Parapodial Dll expression marks premorphogenetic
notopodia and neuropodia, becoming restricted
to the bases of notopodial cirri and to ventral
portions of neuropodia. In outgrowing cephalic appendages,
Dll activity is primarily restricted to proximal
domains. Dll expression is also prominent in the brain. dac
expression occurs in the brain, nerve cord ganglia, a pair
of pharyngeal ganglia, presumed interneurons linking a
pair of segmental nerves, and in newly differentiating
mesoderm. Domains of omb expression include the brain,
nerve cord ganglia, one pair of anterior cirri, presumed
precursors of dorsal musculature, and the same pharyngeal
ganglia and presumed interneurons that express dac.
Contrary to their roles in outgrowing arthropod and
vertebrate appendages, Dll, dac, and omb lack comparable
expression in Neanthes appendages, implying independent
evolution of annelid appendage development. We infer
that parapodia and arthropodia are not structurally or
mechanistically homologous (but their primordia might
be), that Dll’s ancestral bilaterian function was in sensory
and central nervous system differentiation, and that
locomotory appendages possibly evolved from sensory
outgrowths
Coordinated optimization of visual cortical maps (II) Numerical studies
It is an attractive hypothesis that the spatial structure of visual cortical
architecture can be explained by the coordinated optimization of multiple
visual cortical maps representing orientation preference (OP), ocular dominance
(OD), spatial frequency, or direction preference. In part (I) of this study we
defined a class of analytically tractable coordinated optimization models and
solved representative examples in which a spatially complex organization of the
orientation preference map is induced by inter-map interactions. We found that
attractor solutions near symmetry breaking threshold predict a highly ordered
map layout and require a substantial OD bias for OP pinwheel stabilization.
Here we examine in numerical simulations whether such models exhibit
biologically more realistic spatially irregular solutions at a finite distance
from threshold and when transients towards attractor states are considered. We
also examine whether model behavior qualitatively changes when the spatial
periodicities of the two maps are detuned and when considering more than 2
feature dimensions. Our numerical results support the view that neither minimal
energy states nor intermediate transient states of our coordinated optimization
models successfully explain the spatially irregular architecture of the visual
cortex. We discuss several alternative scenarios and additional factors that
may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1102.335
Nanoscale glucan polymer network causes pathogen resistance.
Successful defence of plants against colonisation by fungal pathogens depends on the ability to prevent initial penetration of the plant cell wall. Here we report that the pathogen-induced (1,3)-β-glucan cell wall polymer callose, which is deposited at sites of attempted penetration, directly interacts with the most prominent cell wall polymer, the (1,4)-β-glucan cellulose, to form a three-dimensional network at sites of attempted fungal penetration. Localisation microscopy, a super-resolution microscopy technique based on the precise localisation of single fluorescent molecules, facilitated discrimination between single polymer fibrils in this network. Overexpression of the pathogen-induced callose synthase PMR4 in the model plant Arabidopsis thaliana not only enlarged focal callose deposition and polymer network formation but also resulted in the exposition of a callose layer on the surface of the pre-existing cellulosic cell wall facing the invading pathogen. The importance of this previously unknown polymeric defence network is to prevent cell wall hydrolysis and penetration by the fungus. We anticipate our study to promote nanoscale analysis of plant-microbe interactions with a special focus on polymer rearrangements in and at the cell wall. Moreover, the general applicability of localisation microscopy in visualising polymers beyond plant research will help elucidate their biological function in complex networks
Mechanisms driving variability in the ocean forcing of Pine Island Glacier
Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS
- …
