19,149 research outputs found
Recommended from our members
Practical Issues in the Application of Direct Metal Laser Sintering
Direct Metal Laser Sintering (DMLS) was introduced to meet the objective of producing
metal parts directly from CAD data. CRDM has accumulated six years of experience in
applying this technique, mostly to prototyping parts for evaluation. For some applications,
such as blow moulds, porosity generated in DMLS has proved to be beneficial, but for others
a concession on tolerances or finish are necessary and/or complementary operations are
required, which add to manufacturing time and cost. This paper examines such issues
through some well chosen examples of parts to demonstrate both the strengths and
weaknesses of the DMLS process.Mechanical Engineerin
Work function determination of promising material for thermionic converters
The work done to fabricate Marchuk plasma discharge tubes for measurement of the cesiated emission of lanthanum hexaboride and thoriated tungsten electrodes is described. A photon counting pyrometer was completed and is to be calibrated with a gold standard
Observations of attenuation at 20.6, 31.65 and 90.0 GHz: Preliminary results from Wallops Island, VA
Ground based radiometric observations of atmospheric attenuation at 20.6, 31.65, and 90.0 GHz were made at Wallops Island, Virginia during April and May 1989. Early results from the analysis of the data set are compared with previous observations from California and Colorado. The relative attenuation ratios observed at each frequency during clear, cloudy, and rainy conditions are shown. Plans for complete analysis of the data are described
Application of active controls technology to aircraft bide smoothing systems
A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade offs involving sensor types, choice of feedback loops, human comfort, and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL aircraft and an executive transport are considered. Theoretically predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included
Mechanics of universal horizons
Modified gravity models such as Ho\v{r}ava-Lifshitz gravity or
Einstein-{\ae}ther theory violate local Lorentz invariance and therefore
destroy the notion of a universal light cone. Despite this, in the infrared
limit both models above possess static, spherically symmetric solutions with
"universal horizons" - hypersurfaces that are causal boundaries between an
interior region and asymptotic spatial infinity. In other words, there still
exist black hole solutions. We construct a Smarr formula (the relationship
between the total energy of the spacetime and the area of the horizon) for such
a horizon in Einstein-{\ae}ther theory. We further show that a slightly
modified first law of black hole mechanics still holds with the relevant area
now a cross-section of the universal horizon. We construct new analytic
solutions for certain Einstein-{\ae}ther Lagrangians and illustrate how our
results work in these exact cases. Our results suggest that holography may be
extended to these theories despite the very different causal structure as long
as the universal horizon remains the unique causal boundary when matter fields
are added.Comment: Minor clarifications. References update
Hawking radiation without black hole entropy
In this Letter I point out that Hawking radiation is a purely kinematic
effect that is generic to Lorentzian geometries. Hawking radiation arises for
any test field on any Lorentzian geometry containing an event horizon
regardless of whether or not the Lorentzian geometry satisfies the dynamical
Einstein equations of general relativity. On the other hand, the classical laws
of black hole mechanics are intrinsically linked to the Einstein equations of
general relativity (or their perturbative extension into either semiclassical
quantum gravity or string-inspired scenarios). In particular, the laws of black
hole thermodynamics, and the identification of the entropy of a black hole with
its area, are inextricably linked with the dynamical equations satisfied by the
Lorentzian geometry: entropy is proportional to area (plus corrections) if and
only if the dynamical equations are the Einstein equations (plus corrections).
It is quite possible to have Hawking radiation occur in physical situations in
which the laws of black hole mechanics do not apply, and in situations in which
the notion of black hole entropy does not even make any sense. This observation
has important implications for any derivation of black hole entropy that seeks
to deduce black hole entropy from the Hawking radiation.Comment: Uses ReV_TeX 3.0; Five pages in two-column forma
Relativistic Acoustic Geometry
Sound wave propagation in a relativistic perfect fluid with a non-homogeneous
isentropic flow is studied in terms of acoustic geometry. The sound wave
equation turns out to be equivalent to the equation of motion for a massless
scalar field propagating in a curved space-time geometry. The geometry is
described by the acoustic metric tensor that depends locally on the equation of
state and the four-velocity of the fluid. For a relativistic supersonic flow in
curved space-time the ergosphere and acoustic horizon may be defined in a way
analogous the non-relativistic case. A general-relativistic expression for the
acoustic analog of surface gravity has been found.Comment: 14 pages, LaTe
Minimal Off-Shell Version of N = 1 Chiral Supergravity
We construct the minimal off-shell formulation of N = 1 chiral supergravity
(SUGRA) introducing a complex antisymmetric tensor field and a
complex axial-vector field as auxiliary fields. The resulting algebra
of the right- and left-handed supersymmetry (SUSY) transformations closes off
shell and generates chiral gauge transforamtions and vector gauge
transformations in addition to the transformations which appear in the case
without auxiliary fields.Comment: 9 pages, late
Signaling, Entanglement, and Quantum Evolution Beyond Cauchy Horizons
Consider a bipartite entangled system half of which falls through the event
horizon of an evaporating black hole, while the other half remains coherently
accessible to experiments in the exterior region. Beyond complete evaporation,
the evolution of the quantum state past the Cauchy horizon cannot remain
unitary, raising the questions: How can this evolution be described as a
quantum map, and how is causality preserved? What are the possible effects of
such nonstandard quantum evolution maps on the behavior of the entangled
laboratory partner? More generally, the laws of quantum evolution under extreme
conditions in remote regions (not just in evaporating black-hole interiors, but
possibly near other naked singularities and regions of extreme spacetime
structure) remain untested by observation, and might conceivably be non-unitary
or even nonlinear, raising the same questions about the evolution of entangled
states. The answers to these questions are subtle, and are linked in unexpected
ways to the fundamental laws of quantum mechanics. We show that terrestrial
experiments can be designed to probe and constrain exactly how the laws of
quantum evolution might be altered, either by black-hole evaporation, or by
other extreme processes in remote regions possibly governed by unknown physics.Comment: Combined, revised, and expanded version of quant-ph/0312160 and
hep-th/0402060; 13 pages, RevTeX, 2 eps figure
- …
