1,948 research outputs found
Conformally rescaled spacetimes and Hawking radiation
We study various derivations of Hawking radiation in conformally rescaled
metrics. We focus on two important properties, the location of the horizon
under a conformal transformation and its associated temperature. We find that
the production of Hawking radiation cannot be associated in all cases to the
trapping horizon because its location is not invariant under a conformal
transformation. We also find evidence that the temperature of the Hawking
radiation should transform simply under a conformal transformation, being
invariant for asymptotic observers in the limit that the conformal
transformation factor is unity at their location.Comment: 22 pages, version submitted to journa
Deformation of Codimension-2 Surface and Horizon Thermodynamics
The deformation equation of a spacelike submanifold with an arbitrary
codimension is given by a general construction without using local frames. In
the case of codimension-1, this equation reduces to the evolution equation of
the extrinsic curvature of a spacelike hypersurface. In the more interesting
case of codimension-2, after selecting a local null frame, this deformation
equation reduces to the well known (cross) focusing equations. We show how the
thermodynamics of trapping horizons is related to these deformation equations
in two different formalisms: with and without introducing quasilocal energy. In
the formalism with the quasilocal energy, the Hawking mass in four dimension is
generalized to higher dimension, and it is found that the deformation of this
energy inside a marginal surface can be also decomposed into the contributions
from matter fields and gravitational radiation as in the four dimension. In the
formalism without the quasilocal energy, we generalize the definition of slowly
evolving future outer trapping horizons proposed by Booth to past trapping
horizons. The dynamics of the trapping horizons in FLRW universe is given as an
example. Especially, the slowly evolving past trapping horizon in the FLRW
universe has close relation to the scenario of slow-roll inflation. Up to the
second order of the slowly evolving parameter in this generalization, the
temperature (surface gravity) associated with the slowly evolving trapping
horizon in the FLRW universe is essentially the same as the one defined by
using the quasilocal energy.Comment: Latex, 61 pages, no figures; v2, type errors corrected; v3,
references and comments are added, English is improved, to appear in JHE
Black-hole dynamics in BHT massive gravity
Using an exact Vaidya-type null-dust solution, we study the area and entropy
laws for dynamical black holes defined by a future outer trapping horizon in
(2+1)-dimensional Bergshoeff-Hohm-Townsend (BHT) massive gravity. We consider
the theory admitting a degenerate (anti-)de Sitter vacuum and pure BHT gravity.
It is shown that, while the area of a black hole decreases by the injection of
a null dust with positive energy density in several cases, the Wald-Kodama
dynamical entropy always increases.Comment: 7 pages, 1 figur
Hamiltonian dynamics for Einstein's action in G0 limit
The Hamiltonian analysis for the Einstein's action in limit is
performed. Considering the original configuration space without involve the
usual variables we show that the version for Einstein's action
is devoid of physical degrees of freedom. In addition, we will identify the
relevant symmetries of the theory such as the extended action, the extended
Hamiltonian, the gauge transformations and the algebra of the constraints. As
complement part of this work, we develop the covariant canonical formalism
where will be constructed a closed and gauge invariant symplectic form. In
particular, using the geometric form we will obtain by means of other way the
same symmetries that we found using the Hamiltonian analysis
Open Problems on Central Simple Algebras
We provide a survey of past research and a list of open problems regarding
central simple algebras and the Brauer group over a field, intended both for
experts and for beginners.Comment: v2 has some small revisions to the text. Some items are re-numbered,
compared to v
Wilsonian Approach to Fluid/Gravity Duality
The problem of gravitational fluctuations confined inside a finite cutoff at
radius outside the horizon in a general class of black hole geometries
is considered. Consistent boundary conditions at both the cutoff surface and
the horizon are found and the resulting modes analyzed. For general cutoff
the dispersion relation is shown at long wavelengths to be that of a
linearized Navier-Stokes fluid living on the cutoff surface. A cutoff-dependent
line-integral formula for the diffusion constant is derived. The
dependence on is interpreted as renormalization group (RG) flow in the
fluid. Taking the cutoff to infinity in an asymptotically AdS context, the
formula for reproduces as a special case well-known results derived
using AdS/CFT. Taking the cutoff to the horizon, the effective speed of sound
goes to infinity, the fluid becomes incompressible and the Navier-Stokes
dispersion relation becomes exact. The resulting universal formula for the
diffusion constant reproduces old results from the membrane
paradigm. Hence the old membrane paradigm results and new AdS/CFT results are
related by RG flow. RG flow-invariance of the viscosity to entropy ratio is shown to follow from the first law of thermodynamics together with
isentropy of radial evolution in classical gravity. The ratio is expected to
run when quantum gravitational corrections are included.Comment: 34 pages, harvmac, clarified boundary conditio
Stringy Stability of Charged Dilaton Black Holes with Flat Event Horizon
Electrically charged black holes with flat event horizon in anti-de Sitter
space have received much attention due to various applications in Anti-de
Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the
behavior of quark-gluon plasma to superconductor. Crucial to the physics on the
dual field theory is the fact that when embedded in string theory, black holes
in the bulk may become vulnerable to instability caused by brane
pair-production. Since dilaton arises naturally in the context of string
theory, we study the effect of coupling dilaton to Maxwell field on the
stability of flat charged AdS black holes. In particular, we study the
stability of Gao-Zhang black holes, which are locally asymptotically anti-de
Sitter. We find that for dilaton coupling parameter > 1, flat black
holes are stable against brane pair production, however for 0 < < 1,
the black holes eventually become unstable as the amount of electrical charges
is increased. Such instability however, behaves somewhat differently from that
of flat Reissner-Nordstr\"om black holes. In addition, we prove that the
Seiberg-Witten action of charged dilaton AdS black hole of Gao-Zhang type with
flat event horizon (at least in 5-dimension) is always logarithmically
divergent at infinity for finite values of , and is finite and positive
in the case tends to infinity . We also comment on the robustness of
our result for other charged dilaton black holes that are not of Gao-Zhang
type.Comment: Fixed some confusions regarding whether part of the discussions
concern electrically charged hole or magnetically charged one. No changes to
the result
Using Simulations as a Starting Point for Constructing Meaningful Learning Games
For many school administrators and decision makers, the term “video games” holds numerous cultural associations which make their adoption in the education space challenging. Additionally, the term is so broad that it can sometimes be difficult to communicate explicitly a desire to build learning experiences that go beyond the Drill and Kill edutainment titles that currently dominate most people’s perceptions of educational games. By contrast, the term “simulations” is often well respected among educators, particularly in the natural sciences. With “simulation” already being a full genre of video games, it would seem natural that researchers are beginning to explore the overlaps between simulation games and pedagogical goals that go beyond those found in Drill and Kill games. In this chapter, we survey some of the relevant research concerning both simulations and video games and outline practical pathways through which we can leverage the interest and frameworks designed for simulation construction to facilitate the introduction of video game concepts and experiences into the classroom environment. In particular, we report on the use of Starlogo TNG, a graphical programming environment in which kids themselves can create simulation-based video games, for deepening children’s understanding of scientific concepts
Isolated and dynamical horizons and their applications
Over the past three decades, black holes have played an important role in
quantum gravity, mathematical physics, numerical relativity and gravitational
wave phenomenology. However, conceptual settings and mathematical models used
to discuss them have varied considerably from one area to another. Over the
last five years a new, quasi-local framework was introduced to analyze diverse
facets of black holes in a unified manner. In this framework, evolving black
holes are modeled by dynamical horizons and black holes in equilibrium by
isolated horizons. We review basic properties of these horizons and summarize
applications to mathematical physics, numerical relativity and quantum gravity.
This paradigm has led to significant generalizations of several results in
black hole physics. Specifically, it has introduced a more physical setting for
black hole thermodynamics and for black hole entropy calculations in quantum
gravity; suggested a phenomenological model for hairy black holes; provided
novel techniques to extract physics from numerical simulations; and led to new
laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte
Critical Overview of Loops and Foams
This is a review of the present status of loop and spin foam approaches to
quantization of four-dimensional general relativity. It aims at raising various
issues which seem to challenge some of the methods and the results often taken
as granted in these domains. A particular emphasis is given to the issue of
diffeomorphism and local Lorentz symmetries at the quantum level and to the
discussion of new spin foam models. We also describe modifications of these two
approaches which may overcome their problems and speculate on other promising
research directions.Comment: 75 page
- …
