283 research outputs found
Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles
A decade ago, tunnels inside mineral grains were found that were likely formed by hyphae of ectomycorrhizal (EcM) fungi. This observation implied that EcM fungi can dissolve mineral grains. The observation raised several questions on the ecology of these ¿rock-eating¿ fungi. This review addresses the roles of these rock-eating EcM associations in plant nutrition, biogeochemical cycles and pedogenesis. Research approaches ranged from molecular to ecosystem level scales. Nutrient deficiencies change EcM seedling exudation patterns of organic anions and thus their potential to mobilise base cations from minerals. This response was fungal species-specific. Some EcM fungi accelerated mineral weathering. While mineral weathering could also increase the concentrations of phytotoxic aluminium in the soil solution, some EcM fungi increase Al tolerance through an enhanced exudation of oxalate. Through their contribution to Al transport, EcM hyphae could be agents in pedogenesis, especially podzolisation. A modelling study indicated that mineral tunnelling is less important than surface weathering by EcM fungi. With both processes taken together, the contribution of EcM fungi to weathering may be significant. In the field vertical niche differentiation of EcM fungi was shown for EcM root tips and extraradical mycelium. In the field EcM fungi and tunnel densities were correlated. Our results support a role of rock-eating EcM fungi in plant nutrition and biogeochemical cycles. EcM fungal species-specific differences indicate the need for further research with regard to this variation in functional traits
Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions
Babesia microti, a tick-transmitted, intraerythrocytic protozoan parasite circulating mainly among small mammals, is the primary cause of human babesiosis. While most cases are transmitted by Ixodes ticks, the disease may also be transmitted through blood transfusion and perinatally. A comprehensive analysis of genome composition, genetic diversity, and gene expression profiling of seven B. microti isolates revealed that genetic variation in isolates from the Northeast United States is almost exclusively associated with genes encoding the surface proteome and secretome of the parasite. Furthermore, we found that polymorphism is restricted to a small number of genes, which are highly expressed during infection. In order to identify pathogen-encoded factors involved in host-parasite interactions, we screened a proteome array comprised of 174 B. microti proteins, including several predicted members of the parasite secretome. Using this immuno-proteomic approach we identified several novel antigens that trigger strong host immune responses during the onset of infection. The genomic and immunological data presented herein provide the first insights into the determinants of B. microti interaction with its mammalian hosts and their relevance for understanding the selective pressures acting on parasite evolution
Initial characterization of the human central proteome
<p>Abstract</p> <p>Background</p> <p>On the basis of large proteomics datasets measured from seven human cell lines we consider their intersection as an approximation of the human central proteome, which is the set of proteins ubiquitously expressed in all human cells. Composition and properties of the central proteome are investigated through bioinformatics analyses.</p> <p>Results</p> <p>We experimentally identify a central proteome comprising 1,124 proteins that are ubiquitously and abundantly expressed in human cells using state of the art mass spectrometry and protein identification bioinformatics. The main represented functions are proteostasis, primary metabolism and proliferation. We further characterize the central proteome considering gene structures, conservation, interaction networks, pathways, drug targets, and coordination of biological processes. Among other new findings, we show that the central proteome is encoded by exon-rich genes, indicating an increased regulatory flexibility through alternative splicing to adapt to multiple environments, and that the protein interaction network linking the central proteome is very efficient for synchronizing translation with other biological processes. Surprisingly, at least 10% of the central proteome has no or very limited functional annotation.</p> <p>Conclusions</p> <p>Our data and analysis provide a new and deeper description of the human central proteome compared to previous results thereby extending and complementing our knowledge of commonly expressed human proteins. All the data are made publicly available to help other researchers who, for instance, need to compare or link focused datasets to a common background.</p
Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML
Occurrence of the BCR-ABL[superscript T315I] gatekeeper mutation is among the most pressing challenges in the therapy of chronic myeloid leukemia (CML). Several BCR-ABL inhibitors have multiple targets and pleiotropic effects that could be exploited for their synergistic potential. Testing combinations of such kinase inhibitors identified a strong synergy between danusertib and bosutinib that exclusively affected CML cells harboring BCR-ABL[superscript T315I]. To elucidate the underlying mechanisms, we applied a systems-level approach comprising phosphoproteomics, transcriptomics and chemical proteomics. Data integration revealed that both compounds targeted Mapk pathways downstream of BCR-ABL, resulting in impaired activity of c-Myc. Using pharmacological validation, we assessed that the relative contributions of danusertib and bosutinib could be mimicked individually by Mapk inhibitors and collectively by downregulation of c-Myc through Brd4 inhibition. Thus, integration of genome- and proteome-wide technologies enabled the elucidation of the mechanism by which a new drug synergy targets the dependency of BCR-ABL[superscript T315I] CML cells on c-Myc through nonobvious off targets
Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity
Primary immunodeficiency disorders enable identification of genes with crucial roles in the human immune system. Here we study patients suffering from recurrent bacterial, viral and Cryptosporidium infections, and identify a biallelic mutation in the MAP3K14 gene encoding NIK (NF- B-inducing kinase). Loss of kinase activity of mutant NIK, predicted by in silico analysis and confirmed by functional assays, leads to defective activation of both canonical and non-canonical NF- B signalling. Patients with mutated NIK exhibit B-cell lymphopenia, decreased frequencies of class-switched memory B cells and hypogammaglobulinemia due to impaired B-cell survival, and impaired ICOSL expression. Although overall T-cell numbers are normal, both follicular helper and memory T cells are perturbed. Natural killer (NK) cells are decreased and exhibit defective activation, leading to impaired formation of NK-cell immunological synapses. Collectively, our data illustrate the non-redundant role for NIK in human immune responses, demonstrating that loss-of-function mutations in NIK can cause multiple aberrations of lymphoid immunity
Experimental characterization of the human non-sequence-specific nucleic acid interactome
CD14 is a coreceptor of Toll-like receptors 7 and 9
CD14 interacts with and is essential for the functions of endosomal TLR7 and TLR9 in mice
A Computational Approach to Analyze the Mechanism of Action of the Kinase Inhibitor Bafetinib
Prediction of drug action in human cells is a major challenge in biomedical research. Additionally, there is strong interest in finding new applications for approved drugs and identifying potential side effects. We present a computational strategy to predict mechanisms, risks and potential new domains of drug treatment on the basis of target profiles acquired through chemical proteomics. Functional protein-protein interaction networks that share one biological function are constructed and their crosstalk with the drug is scored regarding function disruption. We apply this procedure to the target profile of the second-generation BCR-ABL inhibitor bafetinib which is in development for the treatment of imatinib-resistant chronic myeloid leukemia. Beside the well known effect on apoptosis, we propose potential treatment of lung cancer and IGF1R expressing blast crisis
- …
