1,302 research outputs found
Evaluation de la dose optimale et de la rémanence des phéromones pour le piégeage de Cryptophlebia leucotreta Meyrick (Lepidoptera : Olethreutidae) et Pectinophora gossypiella Saunders (Lepidoptera Gelechiidae)
Une étude, menée sur parcelle de cotonniers, a montré une efficacité optimale à la dose de 1mg de phéromone par piège et une attractivité du diffuseur conservée pendant au moins cinq semaine
Ce que la reconstruction comparative peut apporter à la morphologie constructionnelle. Une cavalcade étymologique
This paper reconsiders the etymology of the lexical units Cat. cavalcar, encavalcar,
descavalcar and their cognates, e.g. Span. cabalgar, Port. encavalgar, or It.
discavalcare. An etymological cavalcade in the framework of the Dictionnaire Étymologique
Roman (DÉRom) yields three Proto-Romance etyma: */ka'βall‑ɪk‑a‑/,
*/ɪn‑ka'βall‑ɪk‑a‑/, and */dɪs‑ka'βall‑ɪk‑a‑/. These etyma, out of which only the first one
presents a correlate in written Latin, owe their existence to the application of comparative
reconstruction to the Romance lexicon, the last ones respresenting derivatives from
*/ka'βall‑ɪk‑a‑/ with the prefixes */ɪn‑/ and */dɪs‑/
Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in Maritime pine plantations
To assess the sustainability of plantation forest management we compare two types of biodiversity indicators. We used the species richness of saproxylic beetles as a case study to test the “species” and “environmental” indicator approaches. We compared single species abundance or occurrence and deadwood volume or diversity as predictor variables. • Beetles were sampled with flight interception traps in 40 Maritime pine plantation stands. The volume and diversity of deadwood was estimated with line intersect and plot sampling in the same stands. Predictive models of species richness were built with simple linear or Partial Least Square regressions. • Deadwood variables appeared to be good predictors of saproxylic beetle richness at the stand-scale with at least 75% of variance explained. Deadwood diversity variables consistently provided better predictive models than volume variables. The best environmental indicator was the diversity of deadwood elements larger than 15 cm in diameter. • By contrast, the use of “species variables” appeared to be less relevant. To reach the quality of prediction obtained with “environmental variables”, the abundance or occurrence of 6 to 7 species – some of which are difficult to identify – had to be used to build the indicator
Fungal disease incidence along tree diversity gradients depends on latitude in European forests
European forests host a diversity of tree species that are increasingly threatened by fungal pathogens, which may have cascading consequences for forest ecosystems and their functioning. Previous experimental studies suggest that foliar and root pathogen abundance and disease severity decrease with increasing tree species diversity, but evidences from natural forests are rare. Here, we tested whether foliar fungal disease incidence was negatively affected by tree species diversity in different forest types across Europe. We measured the foliar fungal disease incidence on 16 different tree species in 209 plots in six European countries, representing a forest-type gradient from the Mediterranean to boreal forests. Forest plots of single species (monoculture plots) and those with different combinations of two to five tree species (mixed species plots) were compared. Specifically, we analyzed the influence of tree species richness, functional type (conifer vs. broadleaved) and phylogenetic diversity on overall fungal disease incidence. The effect of tree species richness on disease incidence varied with latitude and functional type. Disease incidence tended to increase with tree diversity, in particular in northern latitudes. Disease incidence decreased with tree species richness in conifers, but not in broadleaved trees. However, for specific damage symptoms, no tree species richness effects were observed. Although the patterns were weak, susceptibility of forests to disease appears to depend on the forest site and tree type
Stronger diversity effects with increased environmental stress : a study of multitrophic interactions between oak, powdery mildew and ladybirds
Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduo-punctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress
Risque phytosanitaire portant sur Fusarium oxysporum f. sp. cubense pour les départements d'outre-mer
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Contributions of a global network of tree diversity experiments to sustainable forest plantations
The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1–15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network
- …
