281 research outputs found
Multiple jumps and vacancy diffusion in a face-centered cubic metal
The diffusion of monovacancies in gold has been studied by computer
simulation. Multiple jumps have been found to play a central role in the atomic
dynamics at high temperature, and have been shown to be responsible for an
upward curvature in the Arrhenius plot of the diffusion coefficient.
Appropriate saddle points on the potential energy surface have been found,
supporting the interpretation of vacancy multiple jumps as distinct migration
mechanisms.Comment: 16 page
Physicality and Cooperative Design
CSCW researchers have increasingly come to realize that material work setting and its population of artefacts play a crucial part in coordination of distributed or co-located work. This paper uses the notion of physicality as a basis to understand cooperative work. Using examples from an ongoing fieldwork on cooperative design practices, it provides a conceptual understanding of physicality and shows that material settings and co-worker’s working practices play an important role in understanding physicality of cooperative design
Crossover between hydrodynamic and kinetic modes in binary liquid alloys
Inelastic x-ray scattering (IXS) measurements of the dynamic structure factor
in liquid Na57K43, sensitive to the atomic-scale coarse graining, reveal a
sound velocity value exceeding the long wavelength, continuum value and
indicate the coexistence of two phonon-like modes. Applying Generalized
Collective Mode (GCM) analysis scheme, we show that the positive dispersion of
the sound velocity occurs in a wavelength region below the crossover from
hydrodynamic to atom-type excitations and, therefore, it can not be explained
as sound propagation over the light specie (Na) network. The present result
experimentally proves the existence of positive dispersion in a binary mixture
due to a relaxation process, as opposed to fast sound phenomena.Comment: 7 pages, 8 figures, to appear in "Physical Review B
Single and Paired Point Defects in a 2D Wigner Crystal
Using the path-integral Monte Carlo method, we calculate the energy to form
single and pair vacancies and interstitials in a two-dimensional Wigner crystal
of electrons. We confirm that the lowest-lying energy defects of a 2D electron
Wigner crystal are interstitials, with a creation energy roughly 2/3 that of a
vacancy. The formation energy of the defects goes to zero near melting,
suggesting that point defects might mediate the melting process. In addition,
we find that the interaction between defects is strongly attractive, so that
most defects will exist as bound pairs.Comment: 4 pages, 5 encapsulated figure
Role of Anisotropy and Refractive Index in Scattering and Whiteness Optimization
This is the final version. Available from Wiley via the DOI in this record.The ability to manipulate light–matter interaction to tailor the scattering properties of materials is crucial to many aspects of everyday life, from paints to lighting, and to many fundamental concepts in disordered photonics. Light transport and scattering in a granular disordered medium are dictated by the spatial distribution (structure factor) and the scattering properties (form factor and refractive index) of its building blocks. As yet, however, the importance of anisotropy in such systems has not been considered. Here, a systematic numerical survey that disentangles and quantifies the role of different kinds and degrees of anisotropy in scattering optimization is reported. It is shown that ensembles of uncorrelated, anisotropic particles with nematic ordering enables to increase by 20% the reflectance of low-refractive index media (n = 1.55), using only three-quarters of material compared to their isotropic counterpart. Additionally, these systems exhibit a whiteness comparable to conventionally used high-refractive index media, e.g., TiO2 (n = 2.60). Therefore, the findings not only provide an understanding of the role of anisotropy in scattering optimization, but they also showcase a novel strategy to replace inorganic white enhancers with sustainable and biocompatible products made of biopolymers.Biotechnology and Biological Sciences Research Council (BBSRC)European Research Council (ERC)Leverhulme Trus
Lattice-switch Monte Carlo
We present a Monte Carlo method for the direct evaluation of the difference
between the free energies of two crystal structures. The method is built on a
lattice-switch transformation that maps a configuration of one structure onto a
candidate configuration of the other by `switching' one set of lattice vectors
for the other, while keeping the displacements with respect to the lattice
sites constant. The sampling of the displacement configurations is biased,
multicanonically, to favor paths leading to `gateway' arrangements for which
the Monte Carlo switch to the candidate configuration will be accepted. The
configurations of both structures can then be efficiently sampled in a single
process, and the difference between their free energies evaluated from their
measured probabilities. We explore and exploit the method in the context of
extensive studies of systems of hard spheres. We show that the efficiency of
the method is controlled by the extent to which the switch conserves correlated
microstructure. We also show how, microscopically, the procedure works: the
system finds gateway arrangements which fulfill the sampling bias
intelligently. We establish, with high precision, the differences between the
free energies of the two close packed structures (fcc and hcp) in both the
constant density and the constant pressure ensembles.Comment: 34 pages, 9 figures, RevTeX. To appear in Phys. Rev.
Geometrical Models of the Phase Space Structures Governing Reaction Dynamics
Hamiltonian dynamical systems possessing equilibria of stability type display \emph{reaction-type
dynamics} for energies close to the energy of such equilibria; entrance and
exit from certain regions of the phase space is only possible via narrow
\emph{bottlenecks} created by the influence of the equilibrium points. In this
paper we provide a thorough pedagogical description of the phase space
structures that are responsible for controlling transport in these problems. Of
central importance is the existence of a \emph{Normally Hyperbolic Invariant
Manifold (NHIM)}, whose \emph{stable and unstable manifolds} have sufficient
dimensionality to act as separatrices, partitioning energy surfaces into
regions of qualitatively distinct behavior. This NHIM forms the natural
(dynamical) equator of a (spherical) \emph{dividing surface} which locally
divides an energy surface into two components (`reactants' and `products'), one
on either side of the bottleneck. This dividing surface has all the desired
properties sought for in \emph{transition state theory} where reaction rates
are computed from the flux through a dividing surface. In fact, the dividing
surface that we construct is crossed exactly once by reactive trajectories, and
not crossed by nonreactive trajectories, and related to these properties,
minimizes the flux upon variation of the dividing surface.
We discuss three presentations of the energy surface and the phase space
structures contained in it for 2-degree-of-freedom (DoF) systems in the
threedimensional space , and two schematic models which capture many of
the essential features of the dynamics for -DoF systems. In addition, we
elucidate the structure of the NHIM.Comment: 44 pages, 38 figures, PDFLaTe
Metastable lifetimes in a kinetic Ising model: Dependence on field and system size
The lifetimes of metastable states in kinetic Ising ferromagnets are studied
by droplet theory and Monte Carlo simulation, in order to determine their
dependences on applied field and system size. For a wide range of fields, the
dominant field dependence is universal for local dynamics and has the form of
an exponential in the inverse field, modified by universal and nonuniversal
power-law prefactors. Quantitative droplet-theory predictions are numerically
verified, and small deviations are shown to depend nonuniversally on the
details of the dynamics. We identify four distinct field intervals in which the
field dependence and statistical properties of the lifetimes are different. The
field marking the crossover between the weak-field regime, in which the decay
is dominated by a single droplet, and the intermediate-field regime, in which
it is dominated by a finite droplet density, vanishes logarithmically with
system size. As a consequence the slow decay characteristic of the former
regime may be observable in systems that are macroscopic as far as their
equilibrium properties are concerned.Comment: 18 pages single spaced. RevTex Version 3. FSU-SCRI-94-1
Bio-inspired Highly Scattering Networks via Polymer Phase Separation
A common strategy to optimize whiteness in living organisms consists in using three-dimensional random networks with dense and polydisperse scattering elements constituted by relatively low-refractive index materials. Inspired by these natural architectures, we developed a fast and scalable method to produce highly scattering porous polymer films via phase separation. By varying the molecular weight of the polymer, we modified the morphology of the porous films and therefore tuned their scattering properties. The achieved transport mean free paths are in the micrometer range, improving the scattering strength of analogous low-refractive index systems, e.g. standard white paper, by an order of magnitude. The produced porous films show a broadband reflectivity of approximately 75 % whilst only 4 m thick. In addition, the films are flexible and can be readily index-matched with water (i.e. they become transparent when wet), allowing for various applications such as coatings with tunable transmittance and responsive paints
Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study
The static and dynamic structure of liquid Al is studied using the orbital
free ab-initio molecular dynamics method. Two thermodynamic states along the
coexistence line are considered, namely T = 943 K and 1323 K for which X-ray
and neutron scattering data are available. A new kinetic energy functional,
which fulfills a number of physically relevant conditions is employed, along
with a local first principles pseudopotential. In addition to a comparison with
experiment, we also compare our ab-initio results with those obtained from
conventional molecular dynamics simulations using effective interionic pair
potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR
- …
