12,751 research outputs found
Post-injection normal closure of fractures as a mechanism for induced seismicity
Understanding the controlling mechanisms underlying injection-induced
seismicity is important for optimizing reservoir productivity and addressing
seismicity-related concerns related to hydraulic stimulation in Enhanced
Geothermal Systems. Hydraulic stimulation enhances permeability through
elevated pressures, which cause normal deformations, and the shear slip of
pre-existing fractures. Previous experiments indicate that fracture deformation
in the normal direction reverses as the pressure decreases, e.g., at the end of
stimulation. We hypothesize that this normal closure of fractures enhances
pressure propagation away from the injection region and significantly increases
the potential for post-injection seismicity. To test this hypothesis, hydraulic
stimulation is modeled by numerically coupling fracture deformation, pressure
diffusion and stress alterations for a synthetic geothermal reservoir in which
the flow and mechanics are strongly affected by a complex three-dimensional
fracture network. The role of the normal closure of fractures is verified by
comparing simulations conducted with and without the normal closure effect
The cross-linguistic study of sentence production
The mechanisms underlying language production are often assumed to be universal, and hence not contingent on a speaker’s language. This assumption is problematic for at least two reasons. Given the typological diversity of the world’s languages, only a small subset of languages has actually been studied psycholinguistically. And, in some cases, these investigations have returned results that at least superficially raise doubt about the assumption of universal production mechanisms. The goal of this paper is to illustrate the need for more psycholinguistic work on a typologically more diverse set of languages. We summarize cross-linguistic work on sentence production (specifically: grammatical encoding), focusing on examples where such work has improved our theoretical understanding beyond what studies on English alone could have achieved. But cross-linguistic research has much to offer beyond the testing of existing hypotheses: it can guide the development of theories by revealing the full extent of the human ability to produce language structures. We discuss the potential for interdisciplinary collaborations, and close with a remark on the impact of language endangerment on psycholinguistic research on understudied languages
Applications of thermal energy storage in the cement industry
In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development
Shear thickening in densely packed suspensions of spheres and rods confined to few layers
We investigate confined shear thickening suspensions for which the sample
thickness is comparable to the particle dimensions. Rheometry measurements are
presented for densely packed suspensions of spheres and rods with aspect ratios
6 and 9. By varying the suspension thickness in the direction of the shear
gradient at constant shear rate, we find pronounced oscillations in the stress.
These oscillations become stronger as the gap size is decreased, and the stress
is minimized when the sample thickness becomes commensurate with an integer
number of particle layers. Despite this confinement-induced effect, viscosity
curves show shear thickening that retains bulk behavior down to samples as thin
as two particle diameters for spheres, below which the suspension is jammed.
Rods exhibit similar behavior commensurate with the particle width, but they
show additional effects when the thickness is reduced below about a particle
length as they are forced to align; the stress increases for decreasing gap
size at fixed shear rate while the shear thickening regime gradually
transitions to a Newtonian scaling regime. This weakening of shear thickening
as an ordered configuration is approached contrasts with the strengthening of
shear thickening when the packing fraction is increased in the disordered bulk
limit, despite the fact that both types of confinement eventually lead to
jamming.Comment: 21 pages, 14 figures. submitted to the Journal of Rheolog
Sand stirred by chaotic advection
We study the spatial structure of a granular material, N particles subject to
inelastic mutual collisions, when it is stirred by a bidimensional smooth
chaotic flow. A simple dynamical model is introduced where four different time
scales are explicitly considered: i) the Stokes time, accounting for the
inertia of the particles, ii) the mean collision time among the grains, iii)
the typical time scale of the flow, and iv) the inverse of the Lyapunov
exponent of the chaotic flow, which gives a typical time for the separation of
two initially close parcels of fluid. Depending on the relative values of these
different times a complex scenario appears for the long-time steady spatial
distribution of particles, where clusters of particles may or not appear.Comment: 4 pages, 3 figure
Experimental Violation of Bell's Inequality in Spatial-Parity Space
We report the first experimental violation of Bell's inequality in the
spatial domain using the Einstein--Podolsky--Rosen state. Two-photon states
generated via optical spontaneous parametric downconversion are shown to be
entangled in the parity of their one-dimensional transverse spatial profile.
Superpositions of Bell states are prepared by manipulation of the optical
pump's transverse spatial parity--a classical parameter. The Bell-operator
measurements are made possible by devising simple optical arrangements that
perform rotations in the one-dimensional spatial-parity space of each photon of
an entangled pair and projective measurements onto a basis of even--odd
functions. A Bell-operator value of 2.389 +- 0.016 is recorded, a violation of
the inequality by more than 24 standard deviations.Comment: 10 pages, 3 figures, 1 Tabl
A coarse grained model of granular compaction and relaxation
We introduce a theoretical model for the compaction of granular materials by discrete vibrations which is expected to hold when the intensity of vibration is low. The dynamical unit is taken to be clusters of granules that belong to the same collective structure. We rigourously construct the model from first principles and show that numerical solutions compare favourably with a range of experimental results. This includes the logarithmic relaxation towards a statistical steady state, the effect of varying the intensity of vibration resulting in a so-called `annealing' curve, and the power spectrum of density fluctuations in the steady state itself. A mean-field version of the model is introduced which shares many features with the exact model and is open to quantitative analysi
Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model
Processes acting at the interface between the land surface and the atmosphere have a strong impact on the European summer climate, particularly during extreme years. These processes are to a large extent associated with soil moisture (SM). This study investigates the role of soil moisture-atmosphere coupling for the European summer climate over the period 1959-2006 using simulations with a regional climate model. The focus of this study is set on temperature and precipitation extremes and trends. The analysis is based on simulations performed with the regional climate model CLM, driven with ECMWF reanalysis and operational analysis data. The set of experiments consists of a control simulation (CTL) with interactive SM, and sensitivity experiments with prescribed SM: a dry and a wet run to determine the impact of extreme values of SM, as well as experiments with lowpass-filtered SM from CTL to quantify the impact of the temporal variability of SM on different time scales. Soil moisture-climate interactions are found to have significant effects on temperature extremes in the experiments, and impacts on precipitation extremes are also identified. Case studies of selected major summer heat waves reveal that the intraseasonal and interannual variability of SM account for 5-30% and 10-40% of the simulated heat wave anomaly, respectively. For extreme precipitation events on the other hand, only the wet-day frequency is impacted in the experiments with prescribed soil moisture. Simulated trends for the past decades, which appear consistent with projected changes for the 21st century, are identified to be at least partly linked to SM-atmosphere feedback
Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions
We study velocity statistics of electrostatically driven granular gases. For
two different experiments: (i) non-magnetic particles in a viscous fluid and
(ii) magnetic particles in air, the velocity distribution is non-Maxwellian,
and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is
consistent with kinetic theory of driven dissipative particles. For particles
immersed in a fluid, viscous damping is responsible for the exponential tail,
while for magnetic particles, long-range interactions cause the exponential
tail. We conclude that velocity statistics of dissipative gases are sensitive
to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure
- …
