12,751 research outputs found

    Post-injection normal closure of fractures as a mechanism for induced seismicity

    Get PDF
    Understanding the controlling mechanisms underlying injection-induced seismicity is important for optimizing reservoir productivity and addressing seismicity-related concerns related to hydraulic stimulation in Enhanced Geothermal Systems. Hydraulic stimulation enhances permeability through elevated pressures, which cause normal deformations, and the shear slip of pre-existing fractures. Previous experiments indicate that fracture deformation in the normal direction reverses as the pressure decreases, e.g., at the end of stimulation. We hypothesize that this normal closure of fractures enhances pressure propagation away from the injection region and significantly increases the potential for post-injection seismicity. To test this hypothesis, hydraulic stimulation is modeled by numerically coupling fracture deformation, pressure diffusion and stress alterations for a synthetic geothermal reservoir in which the flow and mechanics are strongly affected by a complex three-dimensional fracture network. The role of the normal closure of fractures is verified by comparing simulations conducted with and without the normal closure effect

    The cross-linguistic study of sentence production

    No full text
    The mechanisms underlying language production are often assumed to be universal, and hence not contingent on a speaker’s language. This assumption is problematic for at least two reasons. Given the typological diversity of the world’s languages, only a small subset of languages has actually been studied psycholinguistically. And, in some cases, these investigations have returned results that at least superficially raise doubt about the assumption of universal production mechanisms. The goal of this paper is to illustrate the need for more psycholinguistic work on a typologically more diverse set of languages. We summarize cross-linguistic work on sentence production (specifically: grammatical encoding), focusing on examples where such work has improved our theoretical understanding beyond what studies on English alone could have achieved. But cross-linguistic research has much to offer beyond the testing of existing hypotheses: it can guide the development of theories by revealing the full extent of the human ability to produce language structures. We discuss the potential for interdisciplinary collaborations, and close with a remark on the impact of language endangerment on psycholinguistic research on understudied languages

    Applications of thermal energy storage in the cement industry

    Get PDF
    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development

    Shear thickening in densely packed suspensions of spheres and rods confined to few layers

    Get PDF
    We investigate confined shear thickening suspensions for which the sample thickness is comparable to the particle dimensions. Rheometry measurements are presented for densely packed suspensions of spheres and rods with aspect ratios 6 and 9. By varying the suspension thickness in the direction of the shear gradient at constant shear rate, we find pronounced oscillations in the stress. These oscillations become stronger as the gap size is decreased, and the stress is minimized when the sample thickness becomes commensurate with an integer number of particle layers. Despite this confinement-induced effect, viscosity curves show shear thickening that retains bulk behavior down to samples as thin as two particle diameters for spheres, below which the suspension is jammed. Rods exhibit similar behavior commensurate with the particle width, but they show additional effects when the thickness is reduced below about a particle length as they are forced to align; the stress increases for decreasing gap size at fixed shear rate while the shear thickening regime gradually transitions to a Newtonian scaling regime. This weakening of shear thickening as an ordered configuration is approached contrasts with the strengthening of shear thickening when the packing fraction is increased in the disordered bulk limit, despite the fact that both types of confinement eventually lead to jamming.Comment: 21 pages, 14 figures. submitted to the Journal of Rheolog

    Sand stirred by chaotic advection

    Full text link
    We study the spatial structure of a granular material, N particles subject to inelastic mutual collisions, when it is stirred by a bidimensional smooth chaotic flow. A simple dynamical model is introduced where four different time scales are explicitly considered: i) the Stokes time, accounting for the inertia of the particles, ii) the mean collision time among the grains, iii) the typical time scale of the flow, and iv) the inverse of the Lyapunov exponent of the chaotic flow, which gives a typical time for the separation of two initially close parcels of fluid. Depending on the relative values of these different times a complex scenario appears for the long-time steady spatial distribution of particles, where clusters of particles may or not appear.Comment: 4 pages, 3 figure

    Experimental Violation of Bell's Inequality in Spatial-Parity Space

    Full text link
    We report the first experimental violation of Bell's inequality in the spatial domain using the Einstein--Podolsky--Rosen state. Two-photon states generated via optical spontaneous parametric downconversion are shown to be entangled in the parity of their one-dimensional transverse spatial profile. Superpositions of Bell states are prepared by manipulation of the optical pump's transverse spatial parity--a classical parameter. The Bell-operator measurements are made possible by devising simple optical arrangements that perform rotations in the one-dimensional spatial-parity space of each photon of an entangled pair and projective measurements onto a basis of even--odd functions. A Bell-operator value of 2.389 +- 0.016 is recorded, a violation of the inequality by more than 24 standard deviations.Comment: 10 pages, 3 figures, 1 Tabl

    A coarse grained model of granular compaction and relaxation

    Get PDF
    We introduce a theoretical model for the compaction of granular materials by discrete vibrations which is expected to hold when the intensity of vibration is low. The dynamical unit is taken to be clusters of granules that belong to the same collective structure. We rigourously construct the model from first principles and show that numerical solutions compare favourably with a range of experimental results. This includes the logarithmic relaxation towards a statistical steady state, the effect of varying the intensity of vibration resulting in a so-called `annealing' curve, and the power spectrum of density fluctuations in the steady state itself. A mean-field version of the model is introduced which shares many features with the exact model and is open to quantitative analysi

    Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model

    Get PDF
    Processes acting at the interface between the land surface and the atmosphere have a strong impact on the European summer climate, particularly during extreme years. These processes are to a large extent associated with soil moisture (SM). This study investigates the role of soil moisture-atmosphere coupling for the European summer climate over the period 1959-2006 using simulations with a regional climate model. The focus of this study is set on temperature and precipitation extremes and trends. The analysis is based on simulations performed with the regional climate model CLM, driven with ECMWF reanalysis and operational analysis data. The set of experiments consists of a control simulation (CTL) with interactive SM, and sensitivity experiments with prescribed SM: a dry and a wet run to determine the impact of extreme values of SM, as well as experiments with lowpass-filtered SM from CTL to quantify the impact of the temporal variability of SM on different time scales. Soil moisture-climate interactions are found to have significant effects on temperature extremes in the experiments, and impacts on precipitation extremes are also identified. Case studies of selected major summer heat waves reveal that the intraseasonal and interannual variability of SM account for 5-30% and 10-40% of the simulated heat wave anomaly, respectively. For extreme precipitation events on the other hand, only the wet-day frequency is impacted in the experiments with prescribed soil moisture. Simulated trends for the past decades, which appear consistent with projected changes for the 21st century, are identified to be at least partly linked to SM-atmosphere feedback

    Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions

    Full text link
    We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is consistent with kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure
    corecore